mindspore.ops.clip_by_value
- mindspore.ops.clip_by_value(x, clip_value_min=None, clip_value_max=None)[source]
Clips tensor values to a specified min and max.
Limits the value of \(x\) to a range, whose lower limit is clip_value_min and upper limit is clip_value_max .
\[\begin{split}out_i= \left\{ \begin{array}{align} clip\_value\_max & \text{ if } x_i\ge clip\_value\_max \\ x_i & \text{ if } clip\_value\_min \lt x_i \lt clip\_value\_max \\ clip\_value\_min & \text{ if } x_i \le clip\_value\_min \\ \end{array}\right.\end{split}\]Note
clip_value_min needs to be less than or equal to clip_value_max . The data type of x, clip_value_min and clip_value_max should support implicit type conversion and cannot all be bool type.
- Parameters
x (Tensor) – Input data. The shape is \((N,*)\) where \(*\) means, any number of additional dimensions.
clip_value_min (Tensor) – The minimum value. clip_value_min and clip_value_max cannot be all None. Default: None.
clip_value_max (Tensor) – The maximum value. clip_value_min and clip_value_max cannot be all None. Default: None.
- Returns
Tensor, a clipped Tensor. The data type is the one with higher precision or higher digits among the x, clip_value_min and clip_value_max .
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> from mindspore import Tensor, ops >>> import numpy as np >>> min_value = Tensor(5, mindspore.float32) >>> max_value = Tensor(20, mindspore.float32) >>> x = Tensor(np.array([[1., 25., 5., 7.], [4., 11., 6., 21.]]), mindspore.float32) >>> output = ops.clip_by_value(x, min_value, max_value) >>> print(output) [[ 5. 20. 5. 7.] [ 5. 11. 6. 20.]]