mindspore.ops.Primitive

class mindspore.ops.Primitive(name)[source]

Primitive is the base class of operator primitives in python.

Parameters

name (str) – Name for the current Primitive.

Examples

>>> add = Primitive('add')
>>>
>>> # or work with prim_attr_register:
>>> # init a Primitive class with attr1 and attr2
>>> class Add(Primitive):
...     @prim_attr_register
...     def __init__(self, attr1, attr2):
...         '''init for add'''
...     # check attr1 and attr2 or do some initializations
...     # init a Primitive obj with attr1=1 and attr2=2
>>> add = Add(attr1=1, attr2=2)
add_prim_attr(name, value)[source]

Add primitive attribute.

Parameters
  • name (str) – Attribute Name.

  • value (Any) – Attribute value.

Examples

>>> import mindspore.ops as ops
>>> a = ops.Add()
>>> a = a.add_prim_attr("attr",1)
>>> out = a.attrs["attr"]
>>> print(out)
1
check_elim(*args)[source]

Check if the primitive can be eliminated. Subclass in need should override this method.

Parameters

args (Primitive args) – Same as arguments of current Primitive.

Returns

A tuple consisting of two elements. The first element means if the primitive can be calculated in compiling stage, the second element is calculated result.

Examples

>>> class AddN(Primitive):
...     @prim_attr_register
...     def __init__(self):
...         self.init_prim_io_names(inputs=["inputs"], outputs=["sum"])
...     def check_elim(self, inputs):
...         if len(inputs) != 1:
...             return (False, None)
...         if isinstance(inputs[0], Tensor):
...             return (True, inputs[0])
...
>>> addn = AddN()
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> output = addn.check_elim((input_x,))
>>> print(output)
(True, Tensor(shape=[3], dtype=Float32, value= [ 1.00000000e+00,  2.00000000e+00,  3.00000000e+00]))
del_prim_attr(name)[source]

Delete primitive attribute.

Parameters

name (str) – Attribute Name.

Examples

>>> import mindspore.ops as ops
>>> a = ops.Add()
>>> a = a.add_prim_attr("attr",1)
>>> a = a.del_prim_attr("attr")
>>> print(a.attrs)
{'input_names': ['x', 'y'], 'output_names' : ['output']}
init_prim_io_names(inputs, outputs)[source]

Initialize the name of inputs and outputs of Tensor or attributes.

Parameters
  • inputs (list[str]) – list of inputs names.

  • outputs (list[str]) – list of outputs names.

Examples

>>> import mindspore.ops as ops
>>> a = ops.Add()
>>> a.init_prim_io_names(["x","y"],["sum"])
>>> print(a.input_names)
['x','y']
>>> print(a.output_names)
['sum']
recompute(mode=True)[source]

Set the primitive recomputed. If a primitive set recomputed feeds into some backward nodes for computing gradient, rather than storing the intermediate activation computed in forward pass, we will recompute it in backward pass.

Note

  • If the computation involves something like randomization or global variable, the equivalence is not guaranteed currently.

  • Not supported in pynative mode

Parameters

mode (bool) – Specifies whether the primitive is recomputed. Default: True.

Examples

>>> import numpy as np
>>> import mindspore as ms
>>> from mindspore import Tensor, ops, nn
>>> class NetRecompute(nn.Cell):
...     def __init__(self):
...         super(NetRecompute,self).__init__()
...         self.relu = ops.ReLU().recompute()
...         self.sqrt = ops.Sqrt()
...     def construct(self, x):
...         out = self.relu(x)
...         return self.sqrt(out)
...
>>> class GradNet(nn.Cell):
...     def __init__(self, network):
...         super(GradNet,self).__init__()
...         self.network = network
...         self.grad = ops.GradOperation()
...     def construct(self, x):
...         g_out = self.grad(self.network)(x)
...         return g_out
...
>>> x = Tensor(np.array([-1,1]).astype(np.float32))
>>> net = NetRecompute()
>>> grad = GradNet(net)
>>> a = grad(x)
>>> print(a)
[0. 0.5]
set_prim_instance_name(instance_name)[source]

Set instance name to primitive operator.

Note

It will be called by default when user defines primitive operator.

Parameters

instance_name (str) – Instance name of primitive operator set by user.

Examples

>>> import mindspore.ops as ops
>>> a = ops.Add()
>>> a.set_prim_instance_name("add")
>>> print(a.instance_name)
add
set_stage(stage)[source]

Add stage id to primitive attribute.

Note

It is valid only in semi auto parallel. In other parallel modes, please set it to be 0.

Parameters

stage (int) – The stage id for the current operation.

Examples

>>> from mindspore import ops
>>> add = ops.Add()
>>> print(add.set_stage(0))
Prim[Add]<stage=0>
shard(strategy)[source]

Add strategies to primitive attribute.

Note

It is valid only in semi auto parallel or auto parallel mode. In other parallel modes, strategies set here will be ignored.

Parameters

strategy (tuple) – Strategy describes the distributed parallel mode of the current primitive.

Examples

>>> from mindspore import ops
>>> add = ops.Add()
>>> print(add.shard(((1, 1), (1, 1))))
Prim[Add]<strategy=((1, 1), (1, 1))>
property update_parameter

Return whether the primitive will update the value of parameter.