mindspore.ops.KLDivLoss
- class mindspore.ops.KLDivLoss(reduction='mean')[source]
Computes the Kullback-Leibler divergence between the logits and the labels.
The updating formulas of KLDivLoss algorithm are as follows,
Then,
where
represents logits. represents labels. represents output.- Parameters
reduction (str) – Specifies the reduction to be applied to the output. Its value must be one of ‘none’, ‘mean’, ‘sum’. Default: ‘mean’.
- Inputs:
logits (Tensor) - The input Tensor. The data type must be float32.
labels (Tensor) - The label Tensor which has the same shape and data type as logits.
- Outputs:
Tensor or Scalar, if reduction is ‘none’, then output is a tensor and has the same shape as logits. Otherwise it is a scalar.
- Raises
- Supported Platforms:
GPU
Examples
>>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.kldiv_loss = ops.KLDivLoss() ... def construct(self, logits, labels): ... result = self.kldiv_loss(logits, labels) ... return result ... >>> net = Net() >>> logits = Tensor(np.array([0.2, 0.7, 0.1]), mindspore.float32) >>> labels = Tensor(np.array([0., 1., 0.]), mindspore.float32) >>> output = net(logits, labels) >>> print(output) -0.23333333