mindspore.numpy.array_split

mindspore.numpy.array_split(x, indices_or_sections, axis=0)[source]

Splits a tensor into multiple sub-tensors.

Note

Currently, array_split only supports mindspore.float32 on CPU.

The only difference between np.split and np.array_split is that np.array_split allows indices_or_sections to be an integer that does not equally divide the axis. For a tensor of length l that should be split into n sections, it returns \(l % n\) sub-arrays of size \(l//n + 1\) and the rest of size \(l//n\).

Parameters
  • x (Tensor) – A Tensor to be divided.

  • indices_or_sections (Union[int, tuple(int), list(int)]) – If integer, \(N\), the tensor will be divided into \(N\) tensors along axis. If tuple(int), list(int) or of sorted integers, the entries indicate where along axis the array is split. For example, \([2, 3]\) would, for \(axis=0\), result in three sub-tensors \(x[:2]\), \(x[2:3]\). If an index exceeds the dimension of the array along axis, an empty sub-array is returned correspondingly.

  • axis (int) – The axis along which to split. Default: 0.

Returns

A list of sub-tensors.

Raises
  • TypeError – If argument indices_or_sections is not integer, tuple(int) or list(int) or argument axis is not integer.

  • ValueError – If argument axis is out of range of \([-x.ndim, x.ndim)\).

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore.numpy as np
>>> input_x = np.arange(9).astype("float32")
>>> output = np.array_split(input_x, 4)
>>> print(output)
(Tensor(shape=[3], dtype=Float32,
    value= [ 0.00000000e+00,  1.00000000e+00,  2.00000000e+00]),
Tensor(shape=[2], dtype=Float32,
    value= [ 3.00000000e+00,  4.00000000e+00]),
Tensor(shape=[2], dtype=Float32,
    value= [ 5.00000000e+00,  6.00000000e+00]),
Tensor(shape=[2], dtype=Float32,
    value= [ 7.00000000e+00,  8.00000000e+00]))