Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.nn.Recall

class mindspore.nn.Recall(eval_type='classification')[source]

Calculates recall for classification and multilabel data.

The recall class creates two local variables, true_positive and false_negative, that are used to compute the recall. This value is ultimately returned as the recall, an idempotent operation that simply divides true_positive by the sum of true_positive and false_negative.

recall=true_positivetrue_positive+false_negative

Note

In the multi-label cases, the elements of y and ypred must be 0 or 1.

Parameters

eval_type (str) – The metric to calculate the recall over a dataset, for classification or multilabel. Default: ‘classification’.

Examples

>>> import numpy as np
>>> from mindspore import nn, Tensor
>>>
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
>>> y = Tensor(np.array([1, 0, 1]))
>>> metric = nn.Recall('classification')
>>> metric.clear()
>>> metric.update(x, y)
>>> recall = metric.eval()
>>> print(recall)
[1. 0.5]
clear()[source]

Clears the internal evaluation result.

eval(average=False)[source]

Computes the recall.

Parameters

average (bool) – Specify whether calculate the average recall. Default value is False.

Returns

Float, the computed result.

update(*inputs)[source]

Updates the internal evaluation result with y_pred and y.

Parameters

inputs – Input y_pred and y. y_pred and y are a Tensor, a list or an array. For ‘classification’ evaluation type, y_pred is in most cases (not strictly) a list of floating numbers in range [0,1] and the shape is (N,C), where N is the number of cases and C is the number of categories. Shape of y can be (N,C) with values 0 and 1 if one-hot encoding is used or the shape is (N,) with integer values if index of category is used. For ‘multilabel’ evaluation type, y_pred and y can only be one-hot encoding with values 0 or 1. Indices with 1 indicate positive category. The shape of y_pred and y are both (N,C).

Raises

ValueError – If the number of input is not 2.