Source code for mindspore.nn.sparse.sparse

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Sparse related tools."""
from mindspore.ops import operations as P
from ..cell import Cell


[docs]class SparseToDense(Cell): """ Converts a sparse tensor into dense. In Python, for the ease of use, three tensors are collected into a SparseTensor class. MindSpore uses three independent dense tensors: indices, value and dense shape to represent the sparse tensor. Separate indexes, values and dense shape tensors can be wrapped in a Sparse Tensor object before being passed to the OPS below. Inputs: - **sparse_tensor** (:class:`mindspore.SparseTensor`): the sparse tensor to convert. Outputs: Tensor, converted from sparse tensor. Raises: TypeError: If `sparse_tensor.indices` is not a Tensor. TypeError: If 'sparse_tensor.values' is not a Tensor. TypeError: If 'sparse_tensor.dense_shape' is not a tuple. Supported Platforms: ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor, SparseTensor >>> import mindspore.nn as nn >>> indices = Tensor([[0, 1], [1, 2]]) >>> values = Tensor([1, 2], dtype=ms.int32) >>> dense_shape = (3, 4) >>> sparse_tensor = SparseTensor(indices, values, dense_shape) >>> sparse_to_dense = nn.SparseToDense() >>> result = sparse_to_dense(sparse_tensor) >>> print(result) [[0 1 0 0] [0 0 2 0] [0 0 0 0]] """ def __init__(self): """Initialize SparseToDense.""" super(SparseToDense, self).__init__() self.sparse_to_dense = P.SparseToDense() def construct(self, sparse_tensor): return self.sparse_to_dense(sparse_tensor.indices, sparse_tensor.values, sparse_tensor.dense_shape)
[docs]class SparseTensorDenseMatmul(Cell): """ Multiplies sparse matrix `a` and dense matrix `b`. The rank of sparse matrix and dense matrix must equal to `2`. Args: adjoint_st (bool): If true, sparse tensor is transposed before multiplication. Default: False. adjoint_dt (bool): If true, dense tensor is transposed before multiplication. Default: False. Inputs: - **indices** (Tensor) - A 2-D Tensor, represents the position of the element in the sparse tensor. Support int32, int64, each element value should be non-negative. The shape is :math:`(n, 2)`. - **values** (Tensor) - A 1-D Tensor, represents the value corresponding to the position in the `indices`. Support float16, float32, float64, int32, int64. The shape should be :math:`(n,)`. - **sparse_shape** (tuple) - A positive int tuple which specifies the shape of sparse tensor, should have 2 elements, represent sparse tensor shape is :math:`(N, C)`. - **dense** (Tensor) - A 2-D Tensor, the dtype is same as `values`. If `adjoint_st` is False and `adjoint_dt` is False, the shape must be :math:`(C, M)`. If `adjoint_st` is False and `adjoint_dt` is True, the shape must be :math:`(M, C)`. If `adjoint_st` is True and `adjoint_dt` is False, the shape must be :math:`(N, M)`. If `adjoint_st` is True and `adjoint_dt` is True, the shape must be :math:`(M, N)`. Outputs: Tensor, the dtype is the same as `values`. If `adjoint_st` is False, the shape is :math:`(N, M)`. If `adjoint_st` is True, the shape is :math:`(C, M)`. Raises: TypeError: If the type of `adjoint_st` or `adjoint_dt` is not bool, or the dtype of `indices`, dtype of `values` and dtype of `dense` don't meet the parameter description. ValueError: If `sparse_shape`, shape of `indices, shape of `values`, and shape of `dense` don't meet the parameter description. Supported Platforms: ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor >>> from mindspore import nn >>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> sparse_shape = (3, 4) >>> dense = Tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype=ms.float32) >>> sparse_dense_matmul = nn.SparseTensorDenseMatmul() >>> out = sparse_dense_matmul(indices, values, sparse_shape, dense) >>> print(out) [[2 2] [6 6] [0 0]] """ def __init__(self, adjoint_st=False, adjoint_dt=False): """Initialize SparseTensorDenseMatmul""" super(SparseTensorDenseMatmul, self).__init__() self.adj_st = adjoint_st self.adj_dt = adjoint_dt self.sparse_dense_matmul = P.SparseTensorDenseMatmul(adjoint_st=self.adj_st, adjoint_dt=self.adj_dt) def construct(self, indices, values, sparse_shape, dense): return self.sparse_dense_matmul(indices, values, sparse_shape, dense)