文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.probability.bnn_layers.DenseLocalReparam

class mindspore.nn.probability.bnn_layers.DenseLocalReparam(in_channels, out_channels, activation=None, has_bias=True, weight_prior_fn=NormalPrior, weight_posterior_fn=normal_post_fn, bias_prior_fn=NormalPrior, bias_posterior_fn=normal_post_fn)[source]

Dense variational layers with Local Reparameterization.

For more details, refer to the paper Variational Dropout and the Local Reparameterization Trick.

Applies dense-connected layer to the input. This layer implements the operation as:

outputs=activation(inputsweight+bias),

where activation is the activation function passed as the activation argument (if passed in), activation is a weight matrix with the same data type as the inputs created by the layer, weight is a weight matrix sampling from posterior distribution of weight, and bias is a bias vector with the same data type as the inputs created by the layer (only if has_bias is True). The bias vector is sampling from posterior distribution of bias.

Parameters
  • in_channels (int) – The number of input channel.

  • out_channels (int) – The number of output channel .

  • has_bias (bool) – Specifies whether the layer uses a bias vector. Default: False.

  • activation (str, Cell) – A regularization function applied to the output of the layer. The type of activation can be a string (eg. ‘relu’) or a Cell (eg. nn.ReLU()). Note that if the type of activation is Cell, it must be instantiated beforehand. Default: None.

  • weight_prior_fn – The prior distribution for weight. It must return a mindspore distribution instance. Default: NormalPrior. (which creates an instance of standard normal distribution). The current version only supports normal distribution.

  • weight_posterior_fn – The posterior distribution for sampling weight. It must be a function handle which returns a mindspore distribution instance. Default: normal_post_fn. The current version only supports normal distribution.

  • bias_prior_fn – The prior distribution for bias vector. It must return a mindspore distribution. Default: NormalPrior(which creates an instance of standard normal distribution). The current version only supports normal distribution.

  • bias_posterior_fn – The posterior distribution for sampling bias vector. It must be a function handle which returns a mindspore distribution instance. Default: normal_post_fn. The current version only supports normal distribution.

Inputs:
  • input (Tensor) - The shape of the tensor is (N,in_channels).

Outputs:

Tensor, the shape of the tensor is (N,out_channels).

Supported Platforms:

Ascend GPU

Examples

>>> net = DenseLocalReparam(3, 4)
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
>>> output = net(input).shape
>>> print(output)
(2, 4)