文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.MatrixSetDiag

class mindspore.nn.MatrixSetDiag[source]

Modifies the batched diagonal part of a batched tensor.

Assume x has k+1 dimensions [I,J,K,...,M,N] and diagonal has k dimensions [I,J,K,...,min(M,N)]. Then the output is a tensor of rank k+1 with dimensions [I,J,K,...,M,N] where:

output[i,j,k,...,m,n]=diagnoal[i,j,k,...,n] for m==n
output[i,j,k,...,m,n]=x[i,j,k,...,m,n] for m!=n
Inputs:
  • x (Tensor) - The batched tensor. Rank k+1, where k >= 1. It can be one of the following data types: float32, float16, int32, int8, and uint8.

  • diagonal (Tensor) - The diagonal values. Must have the same type as input x. Rank k, where k >= 1.

Outputs:

Tensor, has the same type and shape as input x.

Raises
  • TypeError – If dtype of x or diagonal is not one of float32, float16, int32, int8 or uint8.

  • ValueError – If length of shape of x is less than 2.

  • ValueError – If x_shape[-2] < x_shape[-1] and x_shape[:-1] != diagonal_shape.

  • ValueError – If x_shape[-2] >= x_shape[-1] and x_shape[:-2] + x_shape[-1:] != diagonal_shape.

Supported Platforms:

Ascend

Examples

>>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32)
>>> diagonal = Tensor([[-1., 2.], [-1., 1.], [-1., 1.]], mindspore.float32)
>>> matrix_set_diag = nn.MatrixSetDiag()
>>> output = matrix_set_diag(x, diagonal)
>>> print(output)
[[[-1.  0.]
  [ 0.  2.]]
 [[-1.  0.]
  [ 0.  1.]]
 [[-1.  0.]
  [ 0.  1.]]]