Toolbox for anomaly detection by using VAE.
Variational Auto-Encoder(VAE) can be used for Unsupervised Anomaly Detection. The anomaly score is the error
between the X and the reconstruction of X. If the score is high, the X is mostly outlier.
- Parameters
encoder (Cell) – The Deep Neural Network (DNN) model defined as encoder.
decoder (Cell) – The DNN model defined as decoder.
hidden_size (int) – The size of encoder’s output tensor.
latent_size (int) – The size of the latent space.
- Supported Platforms:
Ascend
GPU
-
predict_outlier(sample_x, threshold=100.0)[source]
Predict whether the sample is an outlier.
- Parameters
sample_x (Tensor) – The sample to be predicted, the shape is (N, C, H, W).
threshold (float) – the threshold of the outlier. Default: 100.0.
- Returns
Bool, whether the sample is an outlier.
-
predict_outlier_score(sample_x)[source]
Predict the outlier score.
- Parameters
sample_x (Tensor) – The sample to be predicted, the shape is (N, C, H, W).
- Returns
numpy.dtype, the predicted outlier score of the sample.
-
train(train_dataset, epochs=5)[source]
Train the VAE model.
- Parameters
-
- Returns
Cell, the trained model.