mindspore.nn.ExponentialDecayLR
- class mindspore.nn.ExponentialDecayLR(learning_rate, decay_rate, decay_steps, is_stair=False)[source]
Calculates learning rate base on exponential decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is:
\[decayed\_learning\_rate[i] = learning\_rate * decay\_rate^{p}\]Where :
\[p = \frac{current\_step}{decay\_steps}\]If is_stair is True, the formula is :
\[p = floor(\frac{current\_step}{decay\_steps})\]- Parameters
- Inputs:
Tensor. The current step number.
- Outputs:
Tensor. The learning rate value for the current step.
Examples
>>> learning_rate = 0.1 >>> decay_rate = 0.9 >>> decay_steps = 4 >>> global_step = Tensor(2, mstype.int32) >>> exponential_decay_lr = nn.ExponentialDecayLR(learning_rate, decay_rate, decay_steps) >>> result = exponential_decay_lr(global_step) >>> print(result) 0.09486833