Source code for mindspore.nn.probability.bijector.invert

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Invert Bijector"""
from mindspore._checkparam import Validator as validator
from .bijector import Bijector


[docs]class Invert(Bijector): r""" Invert Bijector. Compute the inverse function of the input bijector. Args: bijector (Bijector): Base Bijector. name (str): The name of the Bijector. Default: 'Invert' + bijector.name. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore >>> import mindspore.nn as nn >>> import mindspore.nn.probability.bijector as msb >>> from mindspore import Tensor >>> import mindspore.context as context >>> context.set_context(mode=1) >>> >>> # To initialize an inverse Exp bijector. >>> inv_exp = msb.Invert(msb.Exp()) >>> value = Tensor([1, 2, 3], dtype=mindspore.float32) >>> ans1 = inv_exp.forward(value) >>> print(ans1.shape) (3,) >>> ans2 = inv_exp.inverse(value) >>> print(ans2.shape) (3,) >>> ans3 = inv_exp.forward_log_jacobian(value) >>> print(ans3.shape) (3,) >>> ans4 = inv_exp.inverse_log_jacobian(value) >>> print(ans4.shape) (3,) """ def __init__(self, bijector, name=""): param = dict(locals()) validator.check_value_type('bijector', bijector, [Bijector], "Invert") name = name or ('Invert' + bijector.name) param["name"] = name super(Invert, self).__init__(is_constant_jacobian=bijector.is_constant_jacobian, is_injective=bijector.is_injective, name=name, dtype=bijector.dtype, param=param) self._bijector = bijector self._batch_shape = self.bijector.batch_shape self._is_scalar_batch = self.bijector.is_scalar_batch @property def bijector(self): return self._bijector def inverse(self, y): return self.bijector("forward", y) def forward(self, x): return self.bijector("inverse", x) def inverse_log_jacobian(self, y): return self.bijector("forward_log_jacobian", y) def forward_log_jacobian(self, x): return self.bijector("inverse_log_jacobian", x)