Source code for mindspore.compression.quant.quantizer

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Base Class of Quantizer."""

from abc import ABC, abstractmethod
from enum import Enum

from ..._checkparam import Validator

__all__ = ["OptimizeOption"]


[docs]class OptimizeOption(Enum): r""" An enum for the model quantization optimize option, currently only support `QAT`. """ # using quantization aware training QAT = "QAT" def __str__(self): return self.value
class Quantizer(ABC): """ Base class of Quantizer. You can implement different kind of quantizer to get different quantization result. Notes: This class is an abstract class. Args: optimize_option (OptimizeOption, list or tuple): Specifies the quant algorithm and options. Default: OptimizeOption.QAT. """ def __init__(self, optimize_option=OptimizeOption.QAT): if not isinstance(optimize_option, list) and not isinstance(optimize_option, tuple): optimize_option = [optimize_option] for option in optimize_option: option = Validator.check_isinstance("optimize_option", option, OptimizeOption) self.optimize_option = optimize_option @abstractmethod def quantize(self, network): pass