Source code for mindspore.common.initializer

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Initializer for cell parameters."""
import numbers
import math

from functools import reduce
import numpy as np
from scipy.stats import truncnorm
from .seed import get_seed, _get_graph_seed
from . import dtype as mstype
from .tensor import Tensor, MetaTensor
from .._c_expression import random_normal

_INITIALIZER_ALIAS = dict()


[docs]class Initializer: """ The base class of the initializer. Initialization of tensor basic attributes and model weight values. Args: kwargs (dict): Keyword arguments for Initializer. Returns: Array, an array after being initialized. """ def __init__(self, **kwargs): self._kwargs = kwargs self._seed = None @property def seed(self): if self._seed is None: seed, seed2 = _get_graph_seed(get_seed(), "init") else: seed, seed2 = self._seed + 1, 0 return seed, seed2 @seed.setter def seed(self, value): self._seed = value def _initialize(self, *kwargs): raise NotImplementedError('Must be overridden!') def __call__(self, arr): return self._initialize(arr)
def _register(*aliases): """Return the alias register.""" def alias_reg(cls): name = cls.__name__ name = name.lower() if name not in _INITIALIZER_ALIAS: _INITIALIZER_ALIAS[name] = cls for alias in aliases: if alias not in _INITIALIZER_ALIAS: _INITIALIZER_ALIAS[alias] = cls return cls return alias_reg def _assignment(arr, num): """Assign the value of `num` to `arr`.""" if arr.shape == (): arr = arr.reshape((1)) arr[:] = num arr = arr.reshape(()) else: if isinstance(num, np.ndarray): arr[:] = num[:] else: arr[:] = num return arr
[docs]@_register('zeros') class Zero(Initializer): """ Initialize the array to zero. Args: arr (Array): The array to be assigned. Returns: Array, an array after being assigned. """ def _initialize(self, arr): _assignment(arr, 0)
[docs]@_register('ones') class One(Initializer): """ Initialize the array to one. Args: arr (Array): The array to be assigned. Returns: Array, assigned array. """ def _initialize(self, arr): _assignment(arr, 1)
def _calculate_fan_in_and_fan_out(shape): """ calculate fan_in and fan_out Args: shape (tuple): input shape. Returns: Tuple, a tuple with two elements, the first element is `n_in` and the second element is `n_out`. """ dimensions = len(shape) if dimensions < 2: raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions") if dimensions == 2: # Linear fan_in = shape[1] fan_out = shape[0] else: num_input_fmaps = shape[1] num_output_fmaps = shape[0] receptive_field_size = 1 if dimensions > 2: receptive_field_size = shape[2] * shape[3] fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size return fan_in, fan_out def _calculate_correct_fan(shape, mode): """ Calculate fan. Args: shape (tuple): input shape. mode (str): only support fan_in and fan_out. Returns: fan_in or fan_out. """ mode = mode.lower() valid_modes = ['fan_in', 'fan_out'] if mode not in valid_modes: raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes)) fan_in, fan_out = _calculate_fan_in_and_fan_out(shape) return fan_in if mode == 'fan_in' else fan_out def _calculate_gain(nonlinearity, param=None): """ Calculate gain. Args: nonlinearity (str): nonlinearity function. param (str): used to calculate negative_slope. Returns: number. """ linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d'] if nonlinearity in linear_fns or nonlinearity == 'sigmoid': res = 1 elif nonlinearity == 'tanh': res = 5.0 / 3 elif nonlinearity == 'relu': res = math.sqrt(2.0) elif nonlinearity == 'leaky_relu': if param is None: negative_slope = 0.01 elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): # True/False are instances of int, hence check above negative_slope = param else: raise ValueError("negative_slope {} not a valid number".format(param)) res = math.sqrt(2.0 / (1 + negative_slope ** 2)) else: raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) return res def _calculate_in_and_out(arr): """ Calculate n_in and n_out. Args: arr (Array): Input array. Returns: Tuple, a tuple with two elements, the first element is `n_in` and the second element is `n_out`. """ dim = len(arr.shape) if dim < 2: raise ValueError("If initialize data with xavier uniform, the dimension of data must be greater than 1.") n_in = arr.shape[1] n_out = arr.shape[0] if dim > 2: counter = reduce(lambda x, y: x * y, arr.shape[2:]) n_in *= counter n_out *= counter return n_in, n_out
[docs]@_register('xavier_uniform') class XavierUniform(Initializer): r""" Initialize the array with xavier uniform algorithm, and from a uniform distribution collect samples within U[-boundary, boundary] The boundary is defined as : where :math:`boundary = gain * \sqrt{\frac{6}{n_{in} + n_{out}}}`. where :math:`n_{in}` is the number of input units in the weight tensor. where :math:`n_{out}` is the number of output units in the weight tensor. Args: gain (Array): The array to be assigned. Default: 1. Returns: Array, assigned array. """ def __init__(self, gain=1): super(XavierUniform, self).__init__(gain=gain) self.gain = gain def _initialize(self, arr): n_in, n_out = _calculate_fan_in_and_fan_out(arr.shape) boundary = self.gain * math.sqrt(6.0 / (n_in + n_out)) data = np.random.uniform(-boundary, boundary, arr.shape) _assignment(arr, data)
[docs]@_register('he_uniform') class HeUniform(Initializer): r""" Initialize the array with He kaiming uniform algorithm, and from a uniform distribution collect samples within U[-boundary, boundary] The boundary is defined as : where :math:`boundary = \sqrt{\frac{6}{(1 + a^2) \times \text{fan_in}}}`. Args: negative_slope (int, float, bool): Default: 0, used when nonlinearity is 'leaky_relu'. mode (str): Default: fan_in. nonlinearity (str): Default: leaky_relu. Returns: Array, assigned array. """ def __init__(self, negative_slope=0, mode='fan_in', nonlinearity='leaky_relu'): super(HeUniform, self).__init__(negative_slope=negative_slope, mode=mode, nonlinearity=nonlinearity) self.negative_slope = negative_slope self.mode = mode self.nonlinearity = nonlinearity def _initialize(self, arr): fan = _calculate_correct_fan(arr.shape, self.mode) gain = _calculate_gain(self.nonlinearity, self.negative_slope) std = gain / math.sqrt(fan) boundary = math.sqrt(3.0) * std data = np.random.uniform(-boundary, boundary, arr.shape) _assignment(arr, data)
[docs]@_register('he_normal') class HeNormal(Initializer): r""" Initialize the array with He kaiming Normal algorithm, and from a normal distribution collect samples within N(0, sigma). Args: negative_slope (int, float, bool): Default: 0, used when nonlinearity is 'leaky_relu'. mode (str): Default: fan_in. nonlinearity (str): Default: leaky_relu. Returns: Array, assigned array. """ def __init__(self, negative_slope=0, mode='fan_in', nonlinearity='leaky_relu'): super(HeNormal, self).__init__(negative_slope=negative_slope, mode=mode, nonlinearity=nonlinearity) self.negative_slope = negative_slope self.mode = mode self.nonlinearity = nonlinearity def _initialize(self, arr): fan = _calculate_correct_fan(arr.shape, self.mode) gain = _calculate_gain(self.nonlinearity, self.negative_slope) std = gain / math.sqrt(fan) data = np.random.normal(0, std, arr.shape) _assignment(arr, data)
[docs]class Constant(Initializer): """ Initialize a constant. Args: value (Union[int, numpy.ndarray]): The value to initialize. Returns: Array, an array after being assigned. """ def __init__(self, value): super(Constant, self).__init__(value=value) self.value = value def _initialize(self, arr): _assignment(arr, self.value)
[docs]@_register() class Uniform(Initializer): """ Initialize a uniform array, and obtain values U(-scale, scale) from the uniform distribution to fill the input tensor. Args: scale (float): The scale of the array. Default: 0.07. Returns: Array, uniform array. """ def __init__(self, scale=0.07): super(Uniform, self).__init__(scale=scale) self.scale = scale def _initialize(self, arr): tmp = np.random.uniform(-self.scale, self.scale, arr.shape) _assignment(arr, tmp)
[docs]@_register() class Normal(Initializer): """ Initialize a normal array, and obtain values N(0, sigma) from the uniform distribution to fill the input tensor. Args: sigma (float): The sigma of the array. Default: 0.01. Returns: Array, normal array. """ def __init__(self, sigma=0.01): super(Normal, self).__init__(sigma=sigma) self.sigma = sigma def _initialize(self, arr): seed, seed2 = self.seed output_tensor = Tensor(np.zeros(arr.shape, dtype=np.float32)) random_normal(0, self.sigma, arr.shape, seed, seed2, output_tensor) output_data = output_tensor.asnumpy() output_data *= self.sigma _assignment(arr, output_data)
[docs]@_register() class TruncatedNormal(Initializer): """ Initialize a truncated normal distribution which is a bounded normal distribution within N(low, high). Args: sigma (float): The sigma of the array. Default: 0.01. Returns: Array, truncated normal array. """ def __init__(self, sigma=0.01): super(TruncatedNormal, self).__init__(sigma=sigma) self.sigma = sigma def _initialize(self, arr): tmp = truncnorm.rvs(-2, 2, loc=0, scale=self.sigma, size=arr.shape, random_state=None) _assignment(arr, tmp)
[docs]def initializer(init, shape=None, dtype=mstype.float32): """ Create and initialize a tensor. Args: init (Union[Tensor, str, Initializer, numbers.Number]): Initialize value. - `str`: The `init` should be the alias of the class inheriting from `Initializer` and the corresponding class will be called. - `Initializer`: The `init` should be the class inheriting from `Initializer` to initialize tensor. - `numbers.Number`: The `Constant` will be called to initialize tensor. shape (Union[tuple, list, int]): A list of integers, a tuple of integers or an integer as the shape of output. Default: None. dtype (:class:`mindspore.dtype`): The type of data in initialized tensor. Default: mindspore.float32. Returns: Union[Tensor, MetaTensor], When `init` is Tensor, the return is Tensor object, otherwise the return is Initialize object. Examples: >>> tensor = initializer('ones', [1, 2, 3], mindspore.float32) >>> tensor = initializer(One(), [1, 2, 3], mindspore.float32) >>> tensor = initializer(0, [1, 2, 3], mindspore.float32) """ if not isinstance(init, (Tensor, numbers.Number, str, Initializer)): raise TypeError("Unsupported init type '{}'.".format(type(init))) if isinstance(init, Tensor): init_shape = init.shape shape = shape if isinstance(shape, (tuple, list)) else [shape] if shape is not None and init_shape != tuple(shape): raise ValueError("The shape of init should be same as variable shape, but got the shape of init {} and " "the variable shape {}.".format(list(init.shape), shape)) return init if isinstance(shape, list): shape = tuple(shape) elif isinstance(shape, numbers.Number): shape = (shape,) for value in shape if shape is not None else (): if not isinstance(value, int) or value <= 0: raise ValueError(f"shape is invalid, shape value must be positive integer, shape:{shape}") if isinstance(init, str): init = _INITIALIZER_ALIAS[init.lower()]() if init is None: raise ValueError("The class corresponding to '{}' was not found.".format(init)) elif isinstance(init, numbers.Number): init = Constant(init) shape = shape if shape is not None else init.shape init_obj = MetaTensor(dtype, shape, init) return init_obj
__all__ = [ 'Initializer', 'initializer', 'TruncatedNormal', 'Normal', 'Uniform', 'HeUniform', 'HeNormal', 'XavierUniform', 'One', 'Zero', 'Constant']