# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fuzzing.
"""
from random import choice
import numpy as np
from mindspore import Model
from mindspore import Tensor
from mindspore import nn
from mindarmour.utils._check_param import check_model, check_numpy_param, \
check_param_multi_types, check_norm_level, check_param_in_range, \
check_param_type, check_int_positive
from mindarmour.utils.logger import LogUtil
from ..adv_robustness.attacks import FastGradientSignMethod, \
MomentumDiverseInputIterativeMethod, ProjectedGradientDescent
from .image_transform import Contrast, Brightness, Blur, \
Noise, Translate, Scale, Shear, Rotate
from .model_coverage_metrics import ModelCoverageMetrics
LOGGER = LogUtil.get_instance()
TAG = 'Fuzzer'
def _select_next(initial_seeds):
""" Randomly select a seed from `initial_seeds`."""
seed_num = choice(range(len(initial_seeds)))
seed = initial_seeds[seed_num]
del initial_seeds[seed_num]
return seed, initial_seeds
def _coverage_gains(coverages):
""" Calculate the coverage gains of mutated samples. """
gains = [0] + coverages[:-1]
gains = np.array(coverages) - np.array(gains)
return gains
def _is_trans_valid(seed, mutate_sample):
""" Check a mutated sample is valid. If the number of changed pixels in
a seed is less than pixels_change_rate*size(seed), this mutate is valid.
Else check the infinite norm of seed changes, if the value of the
infinite norm less than pixel_value_change_rate*255, this mutate is
valid too. Otherwise the opposite.
"""
is_valid = False
pixels_change_rate = 0.02
pixel_value_change_rate = 0.2
diff = np.array(seed - mutate_sample).flatten()
size = np.shape(diff)[0]
l0_norm = np.linalg.norm(diff, ord=0)
linf = np.linalg.norm(diff, ord=np.inf)
if l0_norm > pixels_change_rate*size:
if linf < 256:
is_valid = True
else:
if linf < pixel_value_change_rate*255:
is_valid = True
return is_valid
def _check_eval_metrics(eval_metrics):
""" Check evaluation metrics."""
if isinstance(eval_metrics, (list, tuple)):
eval_metrics_ = []
available_metrics = ['accuracy', 'attack_success_rate', 'kmnc', 'nbc', 'snac']
for elem in eval_metrics:
if elem not in available_metrics:
msg = 'metric in list `eval_metrics` must be in {}, but ' \
'got {}.'.format(available_metrics, elem)
LOGGER.error(TAG, msg)
raise ValueError(msg)
eval_metrics_.append(elem.lower())
elif isinstance(eval_metrics, str):
if eval_metrics != 'auto':
msg = "the value of `eval_metrics` must be 'auto' if it's type " \
"is str, but got {}.".format(eval_metrics)
LOGGER.error(TAG, msg)
raise ValueError(msg)
eval_metrics_ = 'auto'
else:
msg = "the type of `eval_metrics` must be str, list or tuple, " \
"but got {}.".format(type(eval_metrics))
LOGGER.error(TAG, msg)
raise TypeError(msg)
return eval_metrics_
[docs]class Fuzzer:
"""
Fuzzing test framework for deep neural networks.
Reference: `DeepHunter: A Coverage-Guided Fuzz Testing Framework for Deep
Neural Networks <https://dl.acm.org/doi/10.1145/3293882.3330579>`_
Args:
target_model (Model): Target fuzz model.
train_dataset (numpy.ndarray): Training dataset used for determining
the neurons' output boundaries.
neuron_num (int): The number of testing neurons.
segmented_num (int): The number of segmented sections of neurons'
output intervals. Default: 1000.
Examples:
>>> net = Net()
>>> mutate_config = [{'method': 'Blur',
>>> 'params': {'auto_param': [True]}},
>>> {'method': 'Contrast',
>>> 'params': {'factor': [2]}},
>>> {'method': 'Translate',
>>> 'params': {'x_bias': [0.1, 0.2], 'y_bias': [0.2]}},
>>> {'method': 'FGSM',
>>> 'params': {'eps': [0.1, 0.2, 0.3], 'alpha': [0.1]}}]
>>> train_images = np.random.rand(32, 1, 32, 32).astype(np.float32)
>>> model_fuzz_test = Fuzzer(model, train_images, 10, 1000)
>>> samples, labels, preds, strategies, report = model_fuzz_test.fuzz_testing(mutate_config, initial_seeds)
"""
def __init__(self, target_model, train_dataset, neuron_num,
segmented_num=1000):
self._target_model = check_model('model', target_model, Model)
train_dataset = check_numpy_param('train_dataset', train_dataset)
self._coverage_metrics = ModelCoverageMetrics(target_model,
neuron_num,
segmented_num,
train_dataset)
# Allowed mutate strategies so far.
self._strategies = {'Contrast': Contrast,
'Brightness': Brightness,
'Blur': Blur,
'Noise': Noise,
'Translate': Translate,
'Scale': Scale,
'Shear': Shear,
'Rotate': Rotate,
'FGSM': FastGradientSignMethod,
'PGD': ProjectedGradientDescent,
'MDIIM': MomentumDiverseInputIterativeMethod}
self._affine_trans_list = ['Translate', 'Scale', 'Shear', 'Rotate']
self._pixel_value_trans_list = ['Contrast', 'Brightness', 'Blur',
'Noise']
self._attacks_list = ['FGSM', 'PGD', 'MDIIM']
self._attack_param_checklists = {
'FGSM': {'eps': {'dtype': [float],
'range': [0, 1]},
'alpha': {'dtype': [float],
'range': [0, 1]},
'bounds': {'dtype': [tuple]}},
'PGD': {'eps': {'dtype': [float],
'range': [0, 1]},
'eps_iter': {
'dtype': [float],
'range': [0, 1]},
'nb_iter': {'dtype': [int],
'range': [0, 100000]},
'bounds': {'dtype': [tuple]}},
'MDIIM': {'eps': {'dtype': [float],
'range': [0, 1]},
'norm_level': {'dtype': [str, int],
'range': [1, 2, '1', '2', 'l1', 'l2',
'inf', 'np.inf']},
'prob': {'dtype': [float],
'range': [0, 1]},
'bounds': {'dtype': [tuple]}}}
[docs] def fuzzing(self, mutate_config, initial_seeds, coverage_metric='KMNC',
eval_metrics='auto', max_iters=10000, mutate_num_per_seed=20):
"""
Fuzzing tests for deep neural networks.
Args:
mutate_config (list): Mutate configs. The format is
[{'method': 'Blur',
'params': {'radius': [0.1, 0.2], 'auto_param': [True, False]}},
{'method': 'Contrast',
'params': {'factor': [1, 1.5, 2]}},
{'method': 'FGSM',
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1]}},
...].
The supported methods list is in `self._strategies`, and the
params of each method must within the range of optional parameters.
Supported methods are grouped in three types:
Firstly, pixel value based transform methods include:
'Contrast', 'Brightness', 'Blur' and 'Noise'. Secondly, affine
transform methods include: 'Translate', 'Scale', 'Shear' and
'Rotate'. Thirdly, attack methods include: 'FGSM', 'PGD' and 'MDIIM'.
`mutate_config` must have method in the type of pixel value based
transform methods. The way of setting parameters for first and
second type methods can be seen in 'mindarmour/fuzz_testing/image_transform.py'.
For third type methods, the optional parameters refer to
`self._attack_param_checklists`.
initial_seeds (list[list]): Initial seeds used to generate mutated
samples. The format of initial seeds is [[image_data, label],
[...], ...] and the label must be one-hot.
coverage_metric (str): Model coverage metric of neural networks. All
supported metrics are: 'KMNC', 'NBC', 'SNAC'. Default: 'KMNC'.
eval_metrics (Union[list, tuple, str]): Evaluation metrics. If the
type is 'auto', it will calculate all the metrics, else if the
type is list or tuple, it will calculate the metrics specified
by user. All supported evaluate methods are 'accuracy',
'attack_success_rate', 'kmnc', 'nbc', 'snac'. Default: 'auto'.
max_iters (int): Max number of select a seed to mutate.
Default: 10000.
mutate_num_per_seed (int): The number of mutate times for a seed.
Default: 20.
Returns:
- list, mutated samples in fuzz_testing.
- list, ground truth labels of mutated samples.
- list, preds of mutated samples.
- list, strategies of mutated samples.
- dict, metrics report of fuzzer.
Raises:
TypeError: If the type of `eval_metrics` is not str, list or tuple.
TypeError: If the type of metric in list `eval_metrics` is not str.
ValueError: If `eval_metrics` is not equal to 'auto' when it's type is str.
ValueError: If metric in list `eval_metrics` is not in ['accuracy',
'attack_success_rate', 'kmnc', 'nbc', 'snac'].
"""
# Check parameters.
eval_metrics_ = _check_eval_metrics(eval_metrics)
if coverage_metric not in ['KMNC', 'NBC', 'SNAC']:
msg = "coverage_metric must be in ['KMNC', 'NBC', 'SNAC'], " \
"but got {}.".format(coverage_metric)
LOGGER.error(TAG, msg)
raise ValueError(msg)
max_iters = check_int_positive('max_iters', max_iters)
mutate_num_per_seed = check_int_positive('mutate_num_per_seed',
mutate_num_per_seed)
mutate_config = self._check_mutate_config(mutate_config)
mutates = self._init_mutates(mutate_config)
initial_seeds = check_param_type('initial_seeds', initial_seeds, list)
if not initial_seeds:
msg = 'initial_seeds must not be empty.'
raise ValueError(msg)
for seed in initial_seeds:
check_param_type('seed', seed, list)
if len(seed) != 2:
msg = 'seed in initial seeds must have two element image and ' \
'label, but got {} element.'.format(len(seed))
raise ValueError(msg)
check_numpy_param('seed[0]', seed[0])
check_numpy_param('seed[1]', seed[1])
seed.append(0)
seed, initial_seeds = _select_next(initial_seeds)
fuzz_samples = []
true_labels = []
fuzz_preds = []
fuzz_strategies = []
iter_num = 0
while initial_seeds and iter_num < max_iters:
# Mutate a seed.
mutate_samples, mutate_strategies = self._metamorphic_mutate(seed,
mutates,
mutate_config,
mutate_num_per_seed)
# Calculate the coverages and predictions of generated samples.
coverages, predicts = self._get_coverages_and_predict(mutate_samples,
coverage_metric)
coverage_gains = _coverage_gains(coverages)
for mutate, cov, pred, strategy in zip(mutate_samples,
coverage_gains,
predicts, mutate_strategies):
fuzz_samples.append(mutate[0])
true_labels.append(mutate[1])
fuzz_preds.append(pred)
fuzz_strategies.append(strategy)
# if the mutate samples has coverage gains add this samples in
# the initial seeds to guide new mutates.
if cov > 0:
initial_seeds.append(mutate)
seed, initial_seeds = _select_next(initial_seeds)
iter_num += 1
metrics_report = None
if eval_metrics_ is not None:
metrics_report = self._evaluate(fuzz_samples,
true_labels,
fuzz_preds,
fuzz_strategies,
eval_metrics_)
return fuzz_samples, true_labels, fuzz_preds, fuzz_strategies, metrics_report
def _get_coverages_and_predict(self, mutate_samples,
coverage_metric="KNMC"):
""" Calculate the coverages and predictions of generated samples."""
samples = [s[0] for s in mutate_samples]
samples = np.array(samples)
coverages = []
predictions = self._target_model.predict(
Tensor(samples.astype(np.float32)))
predictions = predictions.asnumpy()
for index in range(len(samples)):
mutate = samples[:index + 1]
self._coverage_metrics.calculate_coverage(mutate.astype(np.float32))
if coverage_metric == 'KMNC':
coverages.append(self._coverage_metrics.get_kmnc())
if coverage_metric == 'NBC':
coverages.append(self._coverage_metrics.get_nbc())
if coverage_metric == 'SNAC':
coverages.append(self._coverage_metrics.get_snac())
return coverages, predictions
def _metamorphic_mutate(self, seed, mutates, mutate_config,
mutate_num_per_seed):
"""Mutate a seed using strategies random selected from mutate_config."""
mutate_samples = []
mutate_strategies = []
for _ in range(mutate_num_per_seed):
only_pixel_trans = seed[2]
strategy = choice(mutate_config)
# Choose a pixel value based transform method
if only_pixel_trans:
while strategy['method'] not in self._pixel_value_trans_list:
strategy = choice(mutate_config)
transform = mutates[strategy['method']]
params = strategy['params']
method = strategy['method']
selected_param = {}
for p in params:
selected_param[p] = choice(params[p])
if method in list(self._pixel_value_trans_list + self._affine_trans_list):
if method == 'Shear':
shear_keys = selected_param.keys()
if 'factor_x' in shear_keys and 'factor_y' in shear_keys:
selected_param[choice(['factor_x', 'factor_y'])] = 0
transform.set_params(**selected_param)
mutate_sample = transform.transform(seed[0])
else:
for param_name in selected_param:
transform.__setattr__('_' + str(param_name),
selected_param[param_name])
mutate_sample = transform.generate(np.array([seed[0].astype(np.float32)]),
np.array([seed[1]]))[0]
if method not in self._pixel_value_trans_list:
only_pixel_trans = 1
mutate_sample = [mutate_sample, seed[1], only_pixel_trans]
if _is_trans_valid(seed[0], mutate_sample[0]):
mutate_samples.append(mutate_sample)
mutate_strategies.append(method)
if not mutate_samples:
mutate_samples.append(seed)
mutate_strategies.append(None)
return np.array(mutate_samples), mutate_strategies
def _check_mutate_config(self, mutate_config):
"""Check whether the mutate_config meet the specification."""
mutate_config = check_param_type('mutate_config', mutate_config, list)
has_pixel_trans = False
for config in mutate_config:
check_param_type("config", config, dict)
if set(config.keys()) != {'method', 'params'}:
msg = "The key of each config must be in ('method', 'params'), " \
"but got {}.".format(set(config.keys()))
LOGGER.error(TAG, msg)
raise KeyError(msg)
method = config['method']
params = config['params']
# Method must be in the optional range.
if method not in self._strategies.keys():
msg = "Config methods must be in {}, but got {}." \
.format(self._strategies.keys(), method)
LOGGER.error(TAG, msg)
raise ValueError(msg)
if config['method'] in self._pixel_value_trans_list:
has_pixel_trans = True
check_param_type('params', params, dict)
# Check parameters of attack methods. The parameters of transformed
# methods will be verified in transferred parameters.
if method in self._attacks_list:
self._check_attack_params(method, params)
else:
for key in params.keys():
check_param_type(str(key), params[key], list)
# Methods in `metate_config` should at least have one in the type of
# pixel value based transform methods.
if not has_pixel_trans:
msg = "mutate methods in mutate_config should at least have one " \
"in {}".format(self._pixel_value_trans_list)
raise ValueError(msg)
return mutate_config
def _check_attack_params(self, method, params):
"""Check input parameters of attack methods."""
allow_params = self._attack_param_checklists[method].keys()
for param_name in params:
if param_name not in allow_params:
msg = "parameters of {} must in {}".format(method, allow_params)
raise ValueError(msg)
check_param_type(param_name, params[param_name], list)
for param_value in params[param_name]:
if param_name == 'bounds':
bounds = check_param_multi_types('bounds', param_value, [tuple])
if len(bounds) != 2:
msg = 'The format of bounds must be format (lower_bound, upper_bound),' \
'but got its length as{}'.format(len(bounds))
raise ValueError(msg)
for bound_value in bounds:
_ = check_param_multi_types('bound', bound_value,
[int, float])
if bounds[0] >= bounds[1]:
msg = "upper bound must more than lower bound, " \
"but upper bound got {}, lower bound " \
"got {}".format(bounds[0], bounds[1])
raise ValueError(msg)
elif param_name == 'norm_level':
_ = check_norm_level(param_value)
else:
allow_type = self._attack_param_checklists[method][param_name]['dtype']
allow_range = self._attack_param_checklists[method][param_name]['range']
_ = check_param_multi_types(str(param_name), param_value, allow_type)
_ = check_param_in_range(str(param_name),
param_value,
allow_range[0],
allow_range[1])
def _init_mutates(self, mutate_config):
""" Check whether the mutate_config meet the specification."""
mutates = {}
for mutate in mutate_config:
method = mutate['method']
if method not in self._attacks_list:
mutates[method] = self._strategies[method]()
else:
network = self._target_model._network
loss_fn = self._target_model._loss_fn
if loss_fn is None:
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
mutates[method] = self._strategies[method](network,
loss_fn=loss_fn)
return mutates
def _evaluate(self, fuzz_samples, true_labels, fuzz_preds,
fuzz_strategies, metrics):
"""
Evaluate generated fuzz_testing samples in three dimensions: accuracy,
attack success rate and neural coverage.
Args:
fuzz_samples ([numpy.ndarray, list]): Generated fuzz_testing samples
according to seeds.
true_labels ([numpy.ndarray, list]): Ground truth labels of seeds.
fuzz_preds ([numpy.ndarray, list]): Predictions of generated fuzz samples.
fuzz_strategies ([numpy.ndarray, list]): Mutate strategies of fuzz samples.
metrics (Union[list, tuple, str]): evaluation metrics.
Returns:
dict, evaluate metrics include accuracy, attack success rate
and neural coverage.
"""
true_labels = np.asarray(true_labels)
fuzz_preds = np.asarray(fuzz_preds)
temp = np.argmax(true_labels, axis=1) == np.argmax(fuzz_preds, axis=1)
metrics_report = {}
if metrics == 'auto' or 'accuracy' in metrics:
if temp.any():
acc = np.sum(temp) / np.size(temp)
else:
acc = 0
metrics_report['Accuracy'] = acc
if metrics == 'auto' or 'attack_success_rate' in metrics:
cond = [elem in self._attacks_list for elem in fuzz_strategies]
temp = temp[cond]
if temp.any():
attack_success_rate = 1 - np.sum(temp) / np.size(temp)
else:
attack_success_rate = None
metrics_report['Attack_success_rate'] = attack_success_rate
if metrics == 'auto' or 'kmnc' in metrics or 'nbc' in metrics or 'snac' in metrics:
self._coverage_metrics.calculate_coverage(
np.array(fuzz_samples).astype(np.float32))
if metrics == 'auto' or 'kmnc' in metrics:
kmnc = self._coverage_metrics.get_kmnc()
metrics_report['Neural_coverage_KMNC'] = kmnc
if metrics == 'auto' or 'nbc' in metrics:
nbc = self._coverage_metrics.get_nbc()
metrics_report['Neural_coverage_NBC'] = nbc
if metrics == 'auto' or 'snac' in metrics:
snac = self._coverage_metrics.get_snac()
metrics_report['Neural_coverage_SNAC'] = snac
return metrics_report