Source code for mindarmour.adv_robustness.evaluations.visual_metrics

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Radar map.
"""
from math import pi

import numpy as np

import matplotlib.pyplot as plt

from mindarmour.utils.logger import LogUtil
from mindarmour.utils._check_param import check_param_type, check_numpy_param, \
    check_param_multi_types, check_equal_length

LOGGER = LogUtil.get_instance()
TAG = 'RadarMetric'


[docs]class RadarMetric: """ Radar chart to show the robustness of a model by multiple metrics. Args: metrics_name (Union[tuple, list]): An array of names of metrics to show. metrics_data (numpy.ndarray): The (normalized) values of each metrics of multiple radar curves, like [[0.5, 0.8, ...], [0.2,0.6,...], ...]. Each set of values corresponds to one radar curve. labels (Union[tuple, list]): Legends of all radar curves. title (str): Title of the chart. scale (str): Scalar to adjust axis ticks, such as 'hide', 'norm', 'sparse' or 'dense'. Default: 'hide'. Raises: ValueError: If scale not in ['hide', 'norm', 'sparse', 'dense']. Examples: >>> metrics_name = ['MR', 'ACAC', 'ASS', 'NTE', 'ACTC'] >>> def_metrics = [0.9, 0.85, 0.6, 0.7, 0.8] >>> raw_metrics = [0.5, 0.3, 0.55, 0.65, 0.7] >>> metrics_data = [def_metrics, raw_metrics] >>> metrics_labels = ['before', 'after'] >>> rm = RadarMetric(metrics_name, >>> metrics_data, >>> metrics_labels, >>> title='', >>> scale='sparse') >>> rm.show() """ def __init__(self, metrics_name, metrics_data, labels, title, scale='hide'): self._metrics_name = check_param_multi_types('metrics_name', metrics_name, [tuple, list]) self._metrics_data = check_numpy_param('metrics_data', metrics_data) self._labels = check_param_multi_types('labels', labels, (tuple, list)) _, _ = check_equal_length('metrics_name', metrics_name, 'metrics_data', self._metrics_data[0]) _, _ = check_equal_length('labels', labels, 'metrics_data', metrics_data) self._title = check_param_type('title', title, str) if scale in ['hide', 'norm', 'sparse', 'dense']: self._scale = scale else: msg = "scale must be in ['hide', 'norm', 'sparse', 'dense'], but " \ "got {}".format(scale) LOGGER.error(TAG, msg) raise ValueError(msg) self._nb_var = len(metrics_name) # divide the plot / number of variable self._angles = [n / self._nb_var*2.0*pi for n in range(self._nb_var)] self._angles += self._angles[:1] # add one more point data = [self._metrics_data, self._metrics_data[:, [0]]] self._metrics_data = np.concatenate(data, axis=1)
[docs] def show(self): """ Show the radar chart. """ # Initialise the spider plot plt.clf() axis_pic = plt.subplot(111, polar=True) axis_pic.spines['polar'].set_visible(False) axis_pic.set_yticklabels([]) # If you want the first axis to be on top: axis_pic.set_theta_offset(pi / 2) axis_pic.set_theta_direction(-1) # Draw one axe per variable + add labels labels yet plt.xticks(self._angles[:-1], self._metrics_name) # Draw y labels axis_pic.set_rlabel_position(0) if self._scale == 'hide': plt.yticks([0.0], color="grey", size=7) elif self._scale == 'norm': plt.yticks([0.2, 0.4, 0.6, 0.8], ["0.2", "0.4", "0.6", "0.8"], color="grey", size=7) elif self._scale == 'sparse': plt.yticks([0.5], ["0.5"], color="grey", size=7) elif self._scale == 'dense': ticks = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] labels = ["0.1", "0.2", "0.3", "0.4", "0.5", "0.6", "0.7", "0.8", "0.9"] plt.yticks(ticks, labels, color="grey", size=7) else: # default plt.yticks([0.0], color="grey", size=7) plt.ylim(0, 1) # plot border axis_pic.plot(self._angles, [1]*(self._nb_var + 1), color='grey', linewidth=1, linestyle='solid') for i in range(len(self._labels)): axis_pic.plot(self._angles, self._metrics_data[i], linewidth=1, linestyle='solid', label=self._labels[i]) axis_pic.fill(self._angles, self._metrics_data[i], alpha=0.1) # Add legend plt.legend(loc='upper right', bbox_to_anchor=(0., 0.)) plt.title(self._title, y=1.1, color='g') plt.show()