文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.dynamic_lr

Dynamic Learning Rate

mindspore.nn.dynamic_lr.cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch)[source]

Calculate learning rate base on cosine decay function.

For the i-th step, the formula of computing decayed_learning_rate[i] is:

decayed_learning_rate[i]=min_learning_rate+0.5(max_learning_ratemin_learning_rate)(1+cos(current_epochdecay_epochπ))

Where current_epoch=floor(istep_per_epoch).

Parameters
  • min_lr (float) – The minimum value of learning rate.

  • max_lr (float) – The maximum value of learning rate.

  • total_step (int) – The total number of steps.

  • step_per_epoch (int) – The number of steps in per epoch.

  • decay_epoch (int) – A value used to calculate decayed learning rate.

Returns

list[float]. The size of list is total_step.

Examples

>>> min_lr = 0.01
>>> max_lr = 0.1
>>> total_step = 6
>>> step_per_epoch = 2
>>> decay_epoch = 2
>>> cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch)
[0.1, 0.1, 0.05500000000000001, 0.05500000000000001, 0.01, 0.01]
mindspore.nn.dynamic_lr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair=False)[source]

Calculate learning rate base on exponential decay function.

For the i-th step, the formula of computing decayed_learning_rate[i] is:

decayed_learning_rate[i]=learning_ratedecay_ratecurrent_epochdecay_epoch

Where current_epoch=floor(istep_per_epoch).

Parameters
  • learning_rate (float) – The initial value of learning rate.

  • decay_rate (float) – The decay rate.

  • total_step (int) – The total number of steps.

  • step_per_epoch (int) – The number of steps in per epoch.

  • decay_epoch (int) – A value used to calculate decayed learning rate.

  • is_stair (bool) – If true, learning rate is decayed once every decay_epoch times. Default: False.

Returns

list[float]. The size of list is total_step.

Examples

>>> learning_rate = 0.1
>>> decay_rate = 0.9
>>> total_step = 6
>>> step_per_epoch = 2
>>> decay_epoch = 1
>>> exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch)
[0.1, 0.1, 0.09000000000000001, 0.09000000000000001, 0.08100000000000002, 0.08100000000000002]
mindspore.nn.dynamic_lr.inverse_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair=False)[source]

Calculate learning rate base on inverse-time decay function.

For the i-th step, the formula of computing decayed_learning_rate[i] is:

decayed_learning_rate[i]=learning_rate/(1+decay_ratecurrent_epoch/decay_epoch)

Where current_epoch=floor(istep_per_epoch).

Parameters
  • learning_rate (float) – The initial value of learning rate.

  • decay_rate (float) – The decay rate.

  • total_step (int) – The total number of steps.

  • step_per_epoch (int) – The number of steps in per epoch.

  • decay_epoch (int) – A value used to calculate decayed learning rate.

  • is_stair (bool) – If true, learning rate is decayed once every decay_epoch times. Default: False.

Returns

list[float]. The size of list is total_step.

Examples

>>> learning_rate = 0.1
>>> decay_rate = 0.5
>>> total_step = 6
>>> step_per_epoch = 1
>>> decay_epoch = 1
>>> inverse_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, True)
[0.1, 0.06666666666666667, 0.05, 0.04, 0.03333333333333333, 0.028571428571428574]
mindspore.nn.dynamic_lr.natural_exp_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair=False)[source]

Calculate learning rate base on natural exponential decay function.

For the i-th step, the formula of computing decayed_learning_rate[i] is:

decayed_learning_rate[i]=learning_rateedecay_ratecurrent_epoch

Where current_epoch=floor(istep_per_epoch).

Parameters
  • learning_rate (float) – The initial value of learning rate.

  • decay_rate (float) – The decay rate.

  • total_step (int) – The total number of steps.

  • step_per_epoch (int) – The number of steps in per epoch.

  • decay_epoch (int) – A value used to calculate decayed learning rate.

  • is_stair (bool) – If true, learning rate is decayed once every decay_epoch times. Default: False.

Returns

list[float]. The size of list is total_step.

Examples

>>> learning_rate = 0.1
>>> decay_rate = 0.9
>>> total_step = 6
>>> step_per_epoch = 2
>>> decay_epoch = 2
>>> natural_exp_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, True)
[0.1, 0.1, 0.1, 0.1, 0.016529888822158657, 0.016529888822158657]
mindspore.nn.dynamic_lr.piecewise_constant_lr(milestone, learning_rates)[source]

Get piecewise constant learning rate.

Calculate learning rate by given milestone and learning_rates. Let the value of milestone be (M1,M2,...,MN) and the value of learning_rates be (x1,x2,...,xN). N is the length of milestone. Let the output learning rate be y.

y[i]=xt, for i[Mt1,Mt)
Parameters
  • milestone (Union[list[int], tuple[int]]) – A list of milestone. This list is a monotone increasing list. Every element is a milestone step, and must be greater than 0.

  • learning_rates (Union[list[float], tuple[float]]) – A list of learning rates.

Returns

list[float]. The size of list is MN.

Examples

>>> milestone = [2, 5, 10]
>>> learning_rates = [0.1, 0.05, 0.01]
>>> piecewise_constant_lr(milestone, learning_rates)
[0.1, 0.1, 0.05, 0.05, 0.05, 0.01, 0.01, 0.01, 0.01, 0.01]
mindspore.nn.dynamic_lr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power, update_decay_epoch=False)[source]

Calculate learning rate base on polynomial decay function.

For the i-th step, the formula of computing decayed_learning_rate[i] is:

decayed_learning_rate[i]=(learning_rateend_learning_rate)(1tmp_epoch/tmp_decay_epoch)power+end_learning_rate

Where:

tmp_epoch=min(current_epoch,decay_epoch)
current_epoch=floor(istep_per_epoch)
tmp_decay_epoch=decay_epoch

If update_decay_epoch is true, update the value of tmp_decay_epoch every epoch. The formula is:

tmp_decay_epoch=decay_epochceil(current_epoch/decay_epoch)
Parameters
  • learning_rate (float) – The initial value of learning rate.

  • end_learning_rate (float) – The end value of learning rate.

  • total_step (int) – The total number of steps.

  • step_per_epoch (int) – The number of steps in per epoch.

  • decay_epoch (int) – A value used to calculate decayed learning rate.

  • power (float) – A value used to calculate decayed learning rate. This parameter must be greater than 0.

  • update_decay_epoch (bool) – If true, update decay_epoch. Default: False.

Returns

list[float]. The size of list is total_step.

Examples

>>> learning_rate = 0.1
>>> end_learning_rate = 0.01
>>> total_step = 6
>>> step_per_epoch = 2
>>> decay_epoch = 2
>>> power = 0.5
>>> polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power)
[0.1, 0.1, 0.07363961030678928, 0.07363961030678928, 0.01, 0.01]
mindspore.nn.dynamic_lr.warmup_lr(learning_rate, total_step, step_per_epoch, warmup_epoch)[source]

Get learning rate warming up.

For the i-th step, the formula of computing warmup_learning_rate[i] is:

warmup_learning_rate[i]=learning_ratetmp_epoch/tmp_warmup_epoch

Where tmp_epoch=min(current_epoch,warmup_epoch), current_epoch=floor(istep_per_epoch)

Parameters
  • learning_rate (float) – The initial value of learning rate.

  • warmup_steps (int) – The warm up steps of learning rate.

Inputs:

Tensor. The current step number.

Returns

Tensor. The learning rate value for the current step.

Examples

>>> learning_rate = 0.1
>>> total_step = 6
>>> step_per_epoch = 2
>>> warmup_epoch = 2
>>> warmup_lr(learning_rate, total_step, step_per_epoch, warmup_epoch)
[0.0, 0.0, 0.05, 0.05, 0.1, 0.1]