mindspore.nn.dynamic_lr
Dynamic Learning Rate
- mindspore.nn.dynamic_lr.cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch)[source]
Calculate learning rate base on cosine decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is:
Where
.- Parameters
- Returns
list[float]. The size of list is total_step.
Examples
>>> min_lr = 0.01 >>> max_lr = 0.1 >>> total_step = 6 >>> step_per_epoch = 2 >>> decay_epoch = 2 >>> cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch) [0.1, 0.1, 0.05500000000000001, 0.05500000000000001, 0.01, 0.01]
- mindspore.nn.dynamic_lr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair=False)[source]
Calculate learning rate base on exponential decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is:
Where
.- Parameters
learning_rate (float) – The initial value of learning rate.
decay_rate (float) – The decay rate.
total_step (int) – The total number of steps.
step_per_epoch (int) – The number of steps in per epoch.
decay_epoch (int) – A value used to calculate decayed learning rate.
is_stair (bool) – If true, learning rate is decayed once every decay_epoch times. Default: False.
- Returns
list[float]. The size of list is total_step.
Examples
>>> learning_rate = 0.1 >>> decay_rate = 0.9 >>> total_step = 6 >>> step_per_epoch = 2 >>> decay_epoch = 1 >>> exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch) [0.1, 0.1, 0.09000000000000001, 0.09000000000000001, 0.08100000000000002, 0.08100000000000002]
- mindspore.nn.dynamic_lr.inverse_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair=False)[source]
Calculate learning rate base on inverse-time decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is:
Where
.- Parameters
learning_rate (float) – The initial value of learning rate.
decay_rate (float) – The decay rate.
total_step (int) – The total number of steps.
step_per_epoch (int) – The number of steps in per epoch.
decay_epoch (int) – A value used to calculate decayed learning rate.
is_stair (bool) – If true, learning rate is decayed once every decay_epoch times. Default: False.
- Returns
list[float]. The size of list is total_step.
Examples
>>> learning_rate = 0.1 >>> decay_rate = 0.5 >>> total_step = 6 >>> step_per_epoch = 1 >>> decay_epoch = 1 >>> inverse_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, True) [0.1, 0.06666666666666667, 0.05, 0.04, 0.03333333333333333, 0.028571428571428574]
- mindspore.nn.dynamic_lr.natural_exp_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair=False)[source]
Calculate learning rate base on natural exponential decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is:
Where
.- Parameters
learning_rate (float) – The initial value of learning rate.
decay_rate (float) – The decay rate.
total_step (int) – The total number of steps.
step_per_epoch (int) – The number of steps in per epoch.
decay_epoch (int) – A value used to calculate decayed learning rate.
is_stair (bool) – If true, learning rate is decayed once every decay_epoch times. Default: False.
- Returns
list[float]. The size of list is total_step.
Examples
>>> learning_rate = 0.1 >>> decay_rate = 0.9 >>> total_step = 6 >>> step_per_epoch = 2 >>> decay_epoch = 2 >>> natural_exp_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, True) [0.1, 0.1, 0.1, 0.1, 0.016529888822158657, 0.016529888822158657]
- mindspore.nn.dynamic_lr.piecewise_constant_lr(milestone, learning_rates)[source]
Get piecewise constant learning rate.
Calculate learning rate by given milestone and learning_rates. Let the value of milestone be
and the value of learning_rates be . N is the length of milestone. Let the output learning rate be y.- Parameters
- Returns
list[float]. The size of list is
.
Examples
>>> milestone = [2, 5, 10] >>> learning_rates = [0.1, 0.05, 0.01] >>> piecewise_constant_lr(milestone, learning_rates) [0.1, 0.1, 0.05, 0.05, 0.05, 0.01, 0.01, 0.01, 0.01, 0.01]
- mindspore.nn.dynamic_lr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power, update_decay_epoch=False)[source]
Calculate learning rate base on polynomial decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is:
Where:
If update_decay_epoch is true, update the value of tmp_decay_epoch every epoch. The formula is:
- Parameters
learning_rate (float) – The initial value of learning rate.
end_learning_rate (float) – The end value of learning rate.
total_step (int) – The total number of steps.
step_per_epoch (int) – The number of steps in per epoch.
decay_epoch (int) – A value used to calculate decayed learning rate.
power (float) – A value used to calculate decayed learning rate. This parameter must be greater than 0.
update_decay_epoch (bool) – If true, update decay_epoch. Default: False.
- Returns
list[float]. The size of list is total_step.
Examples
>>> learning_rate = 0.1 >>> end_learning_rate = 0.01 >>> total_step = 6 >>> step_per_epoch = 2 >>> decay_epoch = 2 >>> power = 0.5 >>> polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power) [0.1, 0.1, 0.07363961030678928, 0.07363961030678928, 0.01, 0.01]
- mindspore.nn.dynamic_lr.warmup_lr(learning_rate, total_step, step_per_epoch, warmup_epoch)[source]
Get learning rate warming up.
For the i-th step, the formula of computing warmup_learning_rate[i] is:
Where
- Parameters
- Inputs:
Tensor. The current step number.
- Returns
Tensor. The learning rate value for the current step.
Examples
>>> learning_rate = 0.1 >>> total_step = 6 >>> step_per_epoch = 2 >>> warmup_epoch = 2 >>> warmup_lr(learning_rate, total_step, step_per_epoch, warmup_epoch) [0.0, 0.0, 0.05, 0.05, 0.1, 0.1]