模型推理总览

查看源文件

MindSpore可以基于训练好的模型,在不同的硬件平台上执行推理任务。

Ascend 310是面向边缘场景的高能效高集成度AI处理器,支持对MindIR格式模型进行推理。

MindIR格式可由MindSpore CPU、GPU、Ascend 910导出,可运行在GPU、Ascend 910、Ascend 310上,推理前不需要手动执行模型转换,推理时需要安装MindSpore Lite,调用MindSpore Lite C++ API进行推理。

模型文件

MindSpore支持保存两种类型的数据:训练参数和网络模型(模型中包含参数信息)。

  • 训练参数指的是Checkpoint格式文件。

  • 网络模型包括MindIR和ONNX两种格式文件。

下面介绍一下这几种格式的基本概念及其应用场景。

  • Checkpoint

    • 采用了Protocol Buffers格式,存储了网络中所有的参数值。

    • 一般用于训练任务中断后恢复训练,或训练后的微调(Fine Tune)任务。

  • MindIR

    • 全称MindSpore IR,是MindSpore的一种基于图表示的函数式IR,定义了可扩展的图结构以及算子的IR表示。

    • 它消除了不同后端的模型差异,一般用于跨硬件平台执行推理任务。

  • ONNX

    • 全称Open Neural Network Exchange,是一种针对机器学习模型的通用表达。

    • 一般用于不同框架间的模型迁移或在推理引擎(TensorRT)上使用。

    • 目前支持导出的模型有:Resnet50、YOLOv3_darknet53、YOLOv4、BERT。可以在ONNX Runtime上使用。

执行推理

按照使用环境的不同,推理可以分为以下两种方式。

  1. 本机推理

    通过加载网络训练产生的Checkpoint文件,调用model.predict接口进行推理验证。

  2. 跨平台推理

    使用网络定义和Checkpoint文件,调用export接口导出模型文件,在不同平台执行推理,目前支持导出MindIR和ONNX(仅支持Ascend AI处理器)模型,具体操作可查看保存模型

MindIR介绍

MindSpore通过统一IR定义了网络的逻辑结构和算子的属性,将MindIR格式的模型文件与硬件平台解耦,实现一次训练多次部署。

  1. 基本介绍

    MindIR作为MindSpore的统一模型文件,同时存储了网络结构和权重参数值。同时支持部署到云端Serving和MindSpore Lite平台执行推理任务。

    同一个MindIR文件支持多种硬件形态的部署:

    • 云端Serving部署推理:MindSpore训练生成MindIR模型文件后,可直接发给MindSpore Serving加载,执行推理任务,而无需额外的模型转化,做到Ascend、GPU、CPU等多硬件的模型统一。

    • 使用MindSpore Lite推理部署:MindIR模型可直接使用Lite进行部署。支持在Ascend、英伟达GPU、CPU等云侧服务器上部署,同时也支持在手机等资源受限的端侧硬件上部署。

  2. 使用场景

    先使用网络定义和Checkpoint文件导出MindIR模型文件,再根据不同需求执行推理任务,如基于MindSpore Serving部署推理服务Lite推理

model.eval模型验证

模型已保存在本地

首先构建模型,然后使用mindspore模块的load_checkpointload_param_into_net从本地加载模型与参数,传入验证数据集后即可进行模型推理,验证数据集的处理方式与训练数据集相同。

network = LeNet5(cfg.num_classes)
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
model = Model(network, net_loss, metrics={"Accuracy": Accuracy()})

print("============== Starting Testing ==============")
param_dict = load_checkpoint(args.ckpt_path)
load_param_into_net(network, param_dict)
dataset = create_dataset(os.path.join(args.data_path, "test"),
                            cfg.batch_size,)
acc = model.eval(dataset, dataset_sink_mode=args.dataset_sink_mode)
print("============== {} ==============".format(acc))

其中,
model.eval为模型验证接口,对应接口说明mindspore.train.Model.eval

推理样例代码eval.py

使用MindSpore Hub从华为云加载模型

首先构建模型,然后使用mindspore_hub.load从云端加载模型参数,传入验证数据集后即可进行推理,验证数据集的处理方式与训练数据集相同。

model_uid = "mindspore/1.9/googlenet_cifar10"  # using GoogleNet as an example.
network = mindspore_hub.load(model_uid, num_classes=10)
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
model = Model(network, net_loss, metrics={"Accuracy": Accuracy()})

print("============== Starting Testing ==============")
dataset = create_dataset(os.path.join(args.data_path, "test"),
                            cfg.batch_size,)
acc = model.eval(dataset, dataset_sink_mode=args.dataset_sink_mode)
print("============== {} ==============".format(acc))

其中,
mindspore_hub.load为加载模型参数接口,对应接口说明mindspore_hub.load

使用model.predict接口进行推理操作

model.predict(input_data)

其中,
model.predict为推理接口,对应接口说明mindspore.train.Model.predict