Source code for sciai.architecture.neural_operators.fno3d

# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""FNO3D"""
import mindspore as ms
from mindspore import ops, nn, Tensor

from sciai.architecture.neural_operators.dft import SpectralConv3d
from sciai.utils.check_utils import _check_type
from sciai.utils.math_utils import _get_grid_3d, _to_3tuple


class FNOBlock(nn.Cell):
    """FNO layer"""

    def __init__(self, in_channels, out_channels, modes1, resolution=1024, gelu=True, dtype=ms.float32):
        super().__init__()
        resolution = _to_3tuple(resolution)
        self.conv = SpectralConv3d(in_channels, out_channels, modes1, modes1,
                                   modes1, resolution[0], resolution[1], resolution[2], dtype=dtype)
        self.w = nn.Conv3d(in_channels, out_channels, 1).to_float(dtype)
        self.act = ops.GeLU() if gelu else ops.Identity()

    def construct(self, x):
        """residual output"""
        return self.act(self.conv(x) + self.w(x)) + x


[docs]class FNO3D(nn.Cell): r""" The 3-dimensional Fourier Neural Operator (FNO3D) contains a lifting layer, multiple Fourier layers and a decoder layer. The details can be found in `Fourier neural operator for parametric partial differential equations <https://arxiv.org/pdf/2010.08895.pdf>`_. Args: in_channels (int): The number of channels in the input space. out_channels (int): The number of channels in the output space. resolution (Union[Number, tuple[Number]]): The spatial resolution of the input. modes (int): The number of low-frequency components to keep. channels (int): The number of channels after dimension lifting of the input. Default: 20. depths (int): The number of FNO layers. Default: 4. mlp_ratio (int): The number of channels lifting ratio of the decoder layer. Default: 4. dtype (dtype.Number): The computation type of dense. It should be `ms.float16` or `ms.float32`. `ms.float32` is recommended for the GPU backend, and `ms.float16` is recommended for the Ascend backend. Default: `ms.float32`. Inputs: - **x** (Tensor) - Tensor of shape :math:`(batch\_size, resolution, resolution, resolution, in\_channels)`. Outputs: Tensor, the output of this FNO network. - **output** (Tensor) -Tensor of shape :math:`(batch\_size, resolution, resolution, resolution, out\_channels)`. Raises: TypeError: If `in_channels` is not an int. TypeError: If `out_channels` is not an int. TypeError: If `resolution` is neither an int nor a tuple of int. TypeError: If `modes` is not an int. ValueError: If `modes` is less than 1. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import numpy as np >>> from mindspore.common.initializer import initializer, Normal >>> from sciai.architecture.neural_operators import FNO3D >>> B, H, W, L, C = 2, 64, 64, 64, 1 >>> x = initializer(Normal(), [B, C, H, W, L]) >>> net = FNO3D(in_channels=1, out_channels=1, resolution=64, modes=12) >>> output = net(x) >>> print(output.shape) (2, 64, 64, 64, 1) """ def __init__(self, in_channels, out_channels, resolution, modes, channels=20, depths=4, mlp_ratio=4, dtype=ms.float32): super().__init__() _check_type(in_channels, "in_channels", target_type=int, exclude_type=bool) _check_type(out_channels, "out_channels", target_type=int, exclude_type=bool) _check_type(resolution, "resolution", target_type=(int, tuple), exclude_type=bool) _check_type(modes, "modes", target_type=int, exclude_type=bool) if modes < 1: raise ValueError( "modes must at least 1, but got mode: {}".format(modes)) self.modes1 = modes self.channels = channels self.fc_channel = mlp_ratio * channels self.fc0 = nn.Dense(in_channels + 3, self.channels, has_bias=False).to_float(dtype) self.layers = depths self.fno_seq = nn.SequentialCell() for _ in range(self.layers - 1): self.fno_seq.append( FNOBlock(self.channels, self.channels, modes1=self.modes1, resolution=resolution, dtype=dtype)) self.fno_seq.append( FNOBlock(self.channels, self.channels, self.modes1, resolution=resolution, gelu=False, dtype=dtype)) self.fc1 = nn.Dense(self.channels, self.fc_channel, has_bias=False).to_float(dtype) self.fc2 = nn.Dense(self.fc_channel, out_channels, has_bias=False).to_float(dtype) self.grid = Tensor(_get_grid_3d(resolution), dtype=dtype) self.concat = ops.Concat(axis=-1) self.transpose = ops.Transpose() self.act = ops.GeLU() def construct(self, x: Tensor): """construct""" batch_size = x.shape[0] grid = self.grid.repeat(batch_size, axis=0) x = self.concat((x, grid)) x = self.fc0(x) x = self.transpose(x, (0, 4, 1, 2, 3)) x = self.fno_seq(x) x = self.transpose(x, (0, 2, 3, 4, 1)) x = self.fc1(x) x = self.act(x) x = self.fc2(x) return x