Source code for sponge.potential.potential

# Copyright 2021-2023 @ Shenzhen Bay Laboratory &
#                       Peking University &
#                       Huawei Technologies Co., Ltd
#
# This code is a part of MindSPONGE:
# MindSpore Simulation Package tOwards Next Generation molecular modelling.
#
# MindSPONGE is open-source software based on the AI-framework:
# MindSpore (https://www.mindspore.cn/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Potential"""

from typing import Union, List
import mindspore as ms
from mindspore import Tensor, Parameter
from mindspore.ops import functional as F

from .energy import EnergyCell
from ..function.functions import get_integer
from ..function.operations import GetDistance, GetVector


[docs]class PotentialCell(EnergyCell): r""" Base class for potential energy. The `PotentialCell` is a special subclass of `EnergyCell`. The main difference with `EnergyCell` is that normally `EnergyCell` only outputs one energy term, so that `EnergyCell` returns a Tensor of the shape `(B, 1)`. And a `PotentialCell` can output multiple energy items, so it returns a Tensor of the shape `(B, E)`. Besides, by default the units of `PotentialCell` are equal to the global units. Note: B: Batchsize, i.e. number of walkers in simulation. E: Number of energy terms. Args: num_energies(int): Number of the outputs of energy terms. Default: ``1``. energy_names(Union[str, List[str]]): Names of energy terms. Default: ``"potential"``. length_unit(str): Length unit. If None is given, it will be assigned with the global length unit. Default: ``None``. energy_unit(str): Energy unit. If None is given, it will be assigned with the global energy unit. Default: ``None``. use_pbc(bool): Whether to use periodic boundary condition. name(str): Name of energy. Default: ``"potential"``. kwargs(dict): Other parameters dictionary. Inputs: - **coordinates** (Tensor) - Tensor of shape (B, A, D). Data type is float. Position coordinate of atoms in system. - **neighbour_index** (Tensor) - Tensor of shape (B, A, N). Data type is int. Index of neighbour atoms. Default: ``None``. - **neighbour_mask** (Tensor) - Tensor of shape (B, A, N). Data type is bool. Mask for neighbour atoms. Default: ``None``. - **neighbour_vector** (Tensor) - Tensor of shape (B, A, N, D). Data type is bool. Vectors from central atom to neighbouring atoms. Default: ``None``. - **neighbour_distances** (Tensor) - Tensor of shape (B, A, N). Data type is float. Distance between neighbours atoms. Default: ``None``. - **pbc_box** (Tensor) - Tensor of shape (B, D). Data type is float. Tensor of PBC box. Default: ``None``. Outputs: potential, Tensor of shape `(B, E)`. Data type is float. Supported Platforms: ``Ascend`` ``GPU`` """ def __init__(self, num_energies: int = 1, energy_names: Union[str, List[str]] = 'potential', length_unit: str = None, energy_unit: str = None, use_pbc: bool = None, name: str = 'potential', **kwargs ): super().__init__( name=name, length_unit=length_unit, energy_unit=energy_unit, use_pbc=use_pbc, ) self._kwargs = kwargs self._num_energies = get_integer(num_energies) self._energy_names = [] if isinstance(energy_names, str): self._energy_names = [energy_names] * self._num_energies elif isinstance(energy_names, list): if len(energy_names) != self._num_energies: if len(energy_names) != 1: raise ValueError(f'The number of energy names ({len(energy_names)}) does not match ' f'the number of energ ({self._num_energies})') energy_names *= self._num_energies self._energy_names = energy_names else: raise TypeError(f'The type of energy_names must str or list but got "{type(energy_names)}"') self._exclude_index = None self.get_vector = GetVector(self._use_pbc) self.get_distance = GetDistance(use_pbc=self._use_pbc) @property def exclude_index(self) -> Tensor: """ Exclude index. Return: Tensor, exclude index. """ if self._exclude_index is None: return None return self.identity(self._exclude_index) @property def num_energies(self) -> int: """ Number of energy components. Return: int, number of energy components. """ return self._num_energies @property def energy_names(self) -> List[str]: """ List of strings of energy names. Return: List[str], strings of energy names. """ return self._energy_names
[docs] def set_exclude_index(self, exclude_index: Tensor) -> Tensor: """ Set excluded index. Args: exclude_index(Tensor): Excluded index of the system. Return: Tensor, excluded index. """ self._exclude_index = self._check_exclude_index(exclude_index) return self._exclude_index
[docs] def set_pbc(self, use_pbc: bool = None): """ Set PBC box. Args: use_pbc(bool): Whether to use periodic boundary condition. """ self._use_pbc = use_pbc self.get_vector.set_pbc(use_pbc) self.get_distance.set_pbc(use_pbc) return self
def construct(self, coordinate: Tensor, neighbour_index: Tensor = None, neighbour_mask: Tensor = None, neighbour_vector: Tensor = None, neighbour_distance: Tensor = None, pbc_box: Tensor = None ): r"""Calculate potential energy. Args: coordinates (Tensor): Tensor of shape (B, A, D). Data type is float. Position coordinate of atoms in system. neighbour_index (Tensor): Tensor of shape (B, A, N). Data type is int. Index of neighbour atoms. Default: ``None``. neighbour_mask (Tensor): Tensor of shape (B, A, N). Data type is bool. Mask for neighbour atoms. Default: ``None``. neighbour_vector (Tensor): Tensor of shape (B, A, N, D). Data type is bool. Vectors from central atom to neighbouring atoms. neighbour_distances (Tensor): Tensor of shape (B, A, N). Data type is float. Distance between neighbours atoms. Default: ``None``. pbc_box (Tensor): Tensor of shape (B, D). Data type is float. Tensor of PBC box. Default: ``None``. Returns: potential (Tensor): Tensor of shape (B, E). Data type is float. Note: B: Batchsize, i.e. number of walkers in simulation A: Number of atoms. N: Maximum number of neighbour atoms. D: Spatial dimension of the simulation system. Usually is 3. E: Number of energy terms. """ #pylint: disable=unused-argument raise NotImplementedError def _check_exclude_index(self, exclude_index: Tensor): """check excluded index""" if exclude_index is None: return None exclude_index = Tensor(exclude_index, ms.int32) if exclude_index.ndim == 2: exclude_index = F.expand_dims(exclude_index, 0) if exclude_index.ndim != 3: raise ValueError(f'The rank of exclude_index must be 2 or 3, ' f'but got: {exclude_index.shape}') # (B,A,Ex) return Parameter(exclude_index, name='exclude_index', requires_grad=False)