mindquantum.framework.MQEncoderOnlyOps
- class mindquantum.framework.MQEncoderOnlyOps(expectation_with_grad)[source]
MindQuantum operator that get the expectation of a hamiltonian on a quantum state evaluated by a parameterized quantum circuit (PQC). This PQC should contains a encoder circuit only. This ops is PYNATIVE_MODE supported only.
- Parameters
expectation_with_grad (GradOpsWrapper) – a grad ops that receive encoder data and ansatz data and return the expectation value and gradient value of parameters respect to expectation.
- Inputs:
enc_data (Tensor) - Tensor of encoder data with shape \((N, M)\) that you want to encode into quantum state, where \(N\) means the batch size and \(M\) means the number of encoder parameters.
- Outputs:
Tensor, The expectation value of the hamiltonian.
- Supported Platforms:
GPU
,CPU
Examples
>>> import numpy as np >>> from mindquantum import Circuit, Hamiltonian, QubitOperator >>> from mindquantum import Simulator, MQEncoderOnlyOps >>> import mindspore as ms >>> ms.context.set_context(mode=ms.context.PYNATIVE_MODE, device_target="CPU") >>> circ = Circuit().ry('a', 0).h(0).rx('b', 0) >>> ham = Hamiltonian(QubitOperator('Z0')) >>> sim = Simulator('projectq', 1) >>> grad_ops = sim.get_expectation_with_grad(ham, circ, encoder_params_name=circ.params_name) >>> data = np.array([[0.1, 0.2], [0.3, 0.4]]) >>> f, g = grad_ops(data) >>> f array([[0.0978434 +0.j], [0.27219214+0.j]]) >>> net = MQEncoderOnlyOps(grad_ops) >>> f_ms = net(ms.Tensor(data)) >>> f_ms Tensor(shape=[2, 1], dtype=Float32, value= [[ 9.78433937e-02], [ 2.72192121e-01]])