Source code for mindquantum.algorithm.nisq.chem.hardware_efficient_ansatz

# -*- coding: utf-8 -*-
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Hardware efficient ansatz."""

import itertools
import numpy as np
from mindquantum.core.gates import BasicGate, X
from mindquantum.core.circuit import Circuit
from mindquantum.core.circuit.utils import AP, A
from mindquantum.utils.type_value_check import _check_int_type
from mindquantum.utils.type_value_check import _check_value_should_not_less
from .._ansatz import Ansatz


def _check_single_rot_gate_seq(single_rot_gate_seq):
    """check single rotation gate seq"""
    if not isinstance(single_rot_gate_seq, list):
        raise TypeError(f"single_rot_gate_seq requires a list, but get {type(single_rot_gate_seq)}")
    for gate in single_rot_gate_seq:
        if not issubclass(gate, BasicGate):
            raise ValueError(f"single rotation gate require a parameterized gate, but get {gate}")
        gate_shape = gate(0).matrix().shape
        if gate_shape[0] != 2 or gate_shape[1] != 2:
            raise ValueError(f"single rotation gate should be a one qubit gate.")


[docs]class HardwareEfficientAnsatz(Ansatz): r""" Hardware efficient ansatz is a kind of ansatz that can be easily implement on quantum chip. The hardware efficient is constructed by a layer of single qubit rotation gate and a layer of two qubits entanglement gate. The single qubit rotation gate layer is constructed by one or several rotation gate that act on every qubit. The two qubits entanglement gate layer is constructed by CNOT, CZ, XX, YY, ZZ, etc. acting on entangle_mapping. For more detail, please refers https://www.nature.com/articles/nature23879. Args: n_qubits (int): number of qubit that this ansatz act on. single_rot_gate_seq (list[BasicGate]): A list of parameterized rotation gate that act on each qubit. entangle_gate (BasicGate): The non parameterized entanglement gate. If it is a single qubit gate, than the control version will be used. Default: XGate. entangle_mapping (Union[str, list[tuple[int]]]): The entanglement mapping of entanglement gate. 'linear' means the entanglement gate will be act on every neighboring qubits. 'all' means the entanglemtn gate will be act on any two qbuits. Besides, you can specific which two qubits you want to do entanglement by setting the entangle_mapping to a list of two qubits tuple. Default: "linear". depth (int): The depth of ansatz. Default: 1. Examples: >>> from mindquantum.algorithm.nisq.chem import HardwareEfficientAnsatz >>> from mindquantum import RY, RZ, Z >>> hea = HardwareEfficientAnsatz(3, [RY, RZ], Z, [(0, 1), (0, 2)]) >>> hea.circuit q0: ──RY(d0_n0_0)────RZ(d0_n0_1)────●────●────RY(d1_n0_0)────RZ(d1_n0_1)── │ │ q1: ──RY(d0_n1_0)────RZ(d0_n1_1)────Z────┼────RY(d1_n1_0)────RZ(d1_n1_1)── q2: ──RY(d0_n2_0)────RZ(d0_n2_1)─────────Z────RY(d1_n2_0)────RZ(d1_n2_1)── """ def __init__(self, n_qubits, single_rot_gate_seq, entangle_gate=X, entangle_mapping='linear', depth=1): _check_single_rot_gate_seq(single_rot_gate_seq) _check_int_type('depth', depth) _check_value_should_not_less('depth', 1, depth) if not isinstance(entangle_gate, BasicGate) or entangle_gate.parameterized: raise ValueError(f"entangle gate requires a non parameterized gate, but get {entangle_gate}") super().__init__('Hardware Efficient', n_qubits, single_rot_gate_seq, entangle_gate, entangle_mapping, depth) def _implement(self, single_rot_gate_seq, entangle_gate, entangle_mapping, depth): """Implement of hardware efficient ansatz""" entangle_mapping = self._get_entangle_mapping(entangle_mapping) circ = Circuit() for d in range(depth): circ += AP(self._build_single_rot(single_rot_gate_seq), f'd{d}') circ += self._build_entangle(entangle_gate, entangle_mapping) circ += AP(self._build_single_rot(single_rot_gate_seq), f'd{d+1}') self._circuit = circ def _get_entangle_mapping(self, entangle_mapping): """Get entanglement mapping""" if isinstance(entangle_mapping, str): if entangle_mapping == 'all': return list(itertools.combinations(range(self.n_qubits), 2)) if entangle_mapping == 'linear': res = [] for i in range(self.n_qubits - 1): res.append((i, i + 1)) return res raise ValueError("entangle_mapping can only be 'all', 'linear', \ or a list of tuple of the qubits that the entanglement gate act on.") if isinstance(entangle_mapping, list): for i in entangle_mapping: if isinstance(i, tuple): if len(i) != 2: raise ValueError(f"entanglement only act on two qubits, but get {i}") else: raise TypeError(f"Element of entangle_mapping need a tuple, but get {type(i)}") else: raise ValueError("entangle_mapping can only be 'all', 'linear', \ or a list of tuple of the qubits that the entanglement gate act on.") return entangle_mapping def _build_entangle(self, entangle_gate, entangle_mapping): """build entanglement layer""" gate_qubit = int(np.log2(entangle_gate.matrix().shape[0])) circ = Circuit() for qs in entangle_mapping: if gate_qubit == 1: circ += entangle_gate.on(qs[1], qs[0]) elif gate_qubit == 2: circ += entangle_gate.on(qs) else: raise ValueError(f"Entangle gate can only be a controlled single qubit gate \ or two qubits gate, but get {gate_qubit} qubits gate.") return circ def _build_single_rot(self, single_rot_gate_seq): """build single rotation layer""" circ = Circuit() single_circ = Circuit() for index, gate in enumerate(single_rot_gate_seq): single_circ += gate(f'{index}').on(0) for n in range(self.n_qubits): circ += A(AP(single_circ, f'n{n}'), [n]) return circ