mindquantum.framework.MQAnsatzOnlyOps

查看源文件
class mindquantum.framework.MQAnsatzOnlyOps(expectation_with_grad)[源代码]

仅包含ansatz线路的量子线路演化算子。通过参数化量子线路 (PQC) 获得对量子态的哈密顿期望。此算子只能在 PYNATIVE_MODE 下执行。

参数:
  • expectation_with_grad (GradOpsWrapper) - 接收encoder数据和ansatz数据,并返回期望值和参数相对于期望的梯度值。

输入:
  • ans_data (Tensor) - shape为 \(N\) 的Tensor,用于ansatz电路,其中 \(N\) 表示ansatz参数的数量。

输出:

Tensor,hamiltonian的期望值。

支持平台:

GPU, CPU

样例:

>>> import numpy as np
>>> import mindspore as ms
>>> from mindquantum.core.circuit import Circuit
>>> from mindquantum.core.operators import Hamiltonian, QubitOperator
>>> from mindquantum.framework import MQAnsatzOnlyOps
>>> from mindquantum.simulator import Simulator
>>> ms.set_context(mode=ms.PYNATIVE_MODE, device_target="CPU")
>>> circ = Circuit().ry('a', 0).h(0).rx('b', 0)
>>> ham = Hamiltonian(QubitOperator('Z0'))
>>> sim = Simulator('mqvector', 1)
>>> grad_ops = sim.get_expectation_with_grad(ham, circ)
>>> data = np.array([0.1, 0.2])
>>> f, g = grad_ops(data)
>>> f
array([[0.0978434+0.j]])
>>> net = MQAnsatzOnlyOps(grad_ops)
>>> f_ms = net(ms.Tensor(data))
>>> f_ms
Tensor(shape=[1], dtype=Float32, value= [ 9.78433937e-02])