文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindformers.core.CosineAnnealingLR

查看源文件
class mindformers.core.CosineAnnealingLR(base_lr: float, t_max: int, eta_min: float = 0., **kwargs)[源代码]

该方法在 SGDR: Stochastic Gradient Descent with Warm Restarts 中提出。注意,这里仅实现了SGDR的余弦退火部分,而不包括重启部分。

请参阅论文 SGDR: Stochastic Gradient Descent with Warm Restarts

使用余弦退火调度设置每个参数组的学习率,其中 ηmax 被设为初始学习率, Tcur 表示自上次在SGDR中重启以来的epoch数量:

ηt=ηmin+12(ηmaxηmin)(1+cos(TcurTmaxπ)),Tcur(2k+1)Tmax;ηt+1=ηt+12(ηmaxηmin)(1cos(1Tmaxπ)),Tcur=(2k+1)Tmax.

last_epoch=-1 时,初始学习率设置为 lr 。请注意,由于调度器是递归定义的,学习率可以同时通过其他操作符在此调度器之外进行修改。如果学习率仅由此调度器设置,则每一步的学习率变为:

ηt=ηmin+12(ηmaxηmin)(1+cos(TcurTmaxπ))
参数:
  • base_lr (float) - 初始学习率。

  • t_max (int) - 重启周期的最大周期数。

  • eta_min (float, 可选) - 学习率的最小值。默认值: 0.

输入:
  • global_step (int) - 全局步数。

输出:

学习率。

样例:

>>> import mindspore as ms
>>> from mindformers.core import CosineAnnealingLR
>>>
>>> ms.set_context(mode=ms.GRAPH_MODE)
>>> base_lr = 0.005
>>> t_max = 10
>>> eta_min = 0.0000001
>>>
>>> cosine_annealing = CosineAnnealingLR(base_lr=base_lr, t_max=t_max, eta_min=eta_min)
>>> print(cosine_annealing(1))
0.0048776437
>>> print(cosine_annealing(15))
0.0025000498