MindSpore
开始
整体架构
模型库
快速入门
安装
快速启动
使用教程
开发迁移
预训练
SFT微调
低参微调
评测
推理
MindIE服务化部署
量化
功能说明
权重格式转换
分布式权重切分与合并
分布式并行
数据集
权重保存与断点续训
精度调优
大模型精度调优指南
性能调优
大模型性能调优指南
API参考
mindformers
mindformers.core
mindformers.dataset
mindformers.generation
mindformers.models
mindformers.modules
mindformers.pet
mindformers.pipeline
mindformers.tools
mindformers.wrapper
附录
环境变量说明
配置文件说明
FAQ
模型相关
功能相关
MindFormers贡献指南
魔乐社区贡献指南
RELEASE NOTES
Release Notes
MindSpore
»
索引
索引
A
|
B
|
C
|
E
|
F
|
G
|
I
|
M
|
N
|
P
|
R
|
S
|
T
|
U
|
內
A
added_tokens_decoder() (mindformers.models.PreTrainedTokenizer 类方法)
(mindformers.models.PreTrainedTokenizerFast 类方法)
added_tokens_encoder() (mindformers.models.PreTrainedTokenizer 类方法)
(mindformers.models.PreTrainedTokenizerFast 类方法)
B
batch() (mindformers.models.multi_modal.ModalContentTransformTemplate 方法)
build_conversation_input_text() (mindformers.models.multi_modal.ModalContentTransformTemplate 类方法)
build_inputs_with_special_tokens() (mindformers.models.LlamaTokenizer 方法)
(mindformers.models.LlamaTokenizerFast 方法)
build_labels() (mindformers.models.multi_modal.ModalContentTransformTemplate 方法)
build_modal_context() (mindformers.models.multi_modal.ModalContentTransformTemplate 方法)
C
can_generate() (mindformers.models.PreTrainedModel 类方法)
chat() (mindformers.generation.GenerationMixin 方法)
convert_args_to_mindformers_config() (mindformers.TrainingArguments 方法)
convert_ids_to_tokens() (mindformers.models.PreTrainedTokenizer 方法)
(mindformers.models.PreTrainedTokenizerFast 方法)
convert_tokens_to_ids() (mindformers.models.PreTrainedTokenizer 方法)
(mindformers.models.PreTrainedTokenizerFast 方法)
create_token_type_ids_from_sequences() (mindformers.models.LlamaTokenizer 方法)
E
evaluate() (mindformers.Trainer 方法)
F
finetune() (mindformers.Trainer 方法)
forward() (mindformers.generation.GenerationMixin 方法)
from_config() (mindformers.AutoModel 类方法)
(mindformers.AutoModelForCausalLM 类方法)
(mindformers.AutoModelForZeroShotImageClassification 类方法)
from_dict() (mindformers.models.PretrainedConfig 类方法)
from_json_file() (mindformers.models.PretrainedConfig 类方法)
from_pretrained() (mindformers.AutoConfig 类方法)
(mindformers.AutoModel 类方法)
(mindformers.AutoModelForCausalLM 类方法)
(mindformers.AutoModelForZeroShotImageClassification 类方法)
(mindformers.AutoProcessor 类方法)
(mindformers.AutoTokenizer 类方法)
(mindformers.models.PretrainedConfig 类方法)
(mindformers.models.PreTrainedModel 类方法)
G
generate() (mindformers.generation.GenerationMixin 方法)
get_added_vocab() (mindformers.models.PreTrainedTokenizer 方法)
(mindformers.models.PreTrainedTokenizerFast 方法)
get_cls() (mindformers.tools.register.MindFormerRegister 类方法)
get_config_dict() (mindformers.models.PretrainedConfig 类方法)
get_instance() (mindformers.tools.register.MindFormerRegister 类方法)
get_instance_from_cfg() (mindformers.tools.register.MindFormerRegister 类方法)
get_moe_config() (mindformers.TrainingArguments 方法)
get_need_update_output_items() (mindformers.models.multi_modal.ModalContentTransformTemplate 方法)
get_parallel_config() (mindformers.TrainingArguments 方法)
get_recompute_config() (mindformers.TrainingArguments 方法)
get_special_tokens_mask() (mindformers.models.LlamaTokenizer 方法)
get_warmup_steps() (mindformers.TrainingArguments 方法)
I
infer() (mindformers.generation.GenerationMixin 方法)
is_exist() (mindformers.tools.register.MindFormerRegister 类方法)
M
merge_from_dict() (mindformers.tools.MindFormerConfig 方法)
mindformers.AutoConfig (內置类)
mindformers.AutoModel (內置类)
mindformers.AutoModelForCausalLM (內置类)
mindformers.AutoModelForZeroShotImageClassification (內置类)
mindformers.AutoProcessor (內置类)
mindformers.AutoTokenizer (內置类)
mindformers.core.AdamW (內置类)
mindformers.core.build_context()
內置函数
mindformers.core.Came (內置类)
mindformers.core.CheckpointMonitor (內置类)
mindformers.core.ConstantWarmUpLR (內置类)
mindformers.core.CosineAnnealingLR (內置类)
mindformers.core.CosineAnnealingWarmRestarts (內置类)
mindformers.core.CosineWithRestartsAndWarmUpLR (內置类)
mindformers.core.CosineWithWarmUpLR (內置类)
mindformers.core.CrossEntropyLoss (內置类)
mindformers.core.EmF1Metric (內置类)
mindformers.core.EntityScore (內置类)
mindformers.core.EvalCallBack (內置类)
mindformers.core.get_context()
內置函数
mindformers.core.init_context()
內置函数
mindformers.core.LearningRateWiseLayer (內置类)
mindformers.core.LinearWithWarmUpLR (內置类)
mindformers.core.MFLossMonitor (內置类)
mindformers.core.PerplexityMetric (內置类)
mindformers.core.PolynomialWithWarmUpLR (內置类)
mindformers.core.ProfileMonitor (內置类)
mindformers.core.PromptAccMetric (內置类)
mindformers.core.set_context()
內置函数
mindformers.core.SummaryMonitor (內置类)
mindformers.dataset.CausalLanguageModelDataset (內置类)
mindformers.dataset.ContrastiveLanguageImagePretrainDataset (內置类)
mindformers.dataset.KeyWordGenDataset (內置类)
mindformers.dataset.MultiTurnDataset (內置类)
mindformers.generation.GenerationConfig (內置类)
mindformers.generation.GenerationMixin (內置类)
mindformers.ModelRunner (內置类)
mindformers.models.glm2.ChatGLM2Config (內置类)
mindformers.models.glm2.ChatGLM2ForConditionalGeneration (內置类)
mindformers.models.glm2.ChatGLM3Tokenizer (內置类)
mindformers.models.glm2.ChatGLM4Tokenizer (內置类)
mindformers.models.LlamaConfig (內置类)
mindformers.models.LlamaForCausalLM (內置类)
mindformers.models.LlamaTokenizer (內置类)
mindformers.models.LlamaTokenizerFast (內置类)
mindformers.models.multi_modal.ModalContentTransformTemplate (內置类)
mindformers.models.PretrainedConfig (內置类)
mindformers.models.PreTrainedModel (內置类)
mindformers.models.PreTrainedTokenizer (內置类)
mindformers.models.PreTrainedTokenizerFast (內置类)
mindformers.modules.OpParallelConfig (內置类)
mindformers.pet.models.LoraModel (內置类)
mindformers.pet.pet_config.LoraConfig (內置类)
mindformers.pet.pet_config.PetConfig (內置类)
mindformers.pipeline()
內置函数
mindformers.pipeline.MultiModalToTextPipeline (內置类)
mindformers.run_check()
內置函数
mindformers.tools.MindFormerConfig (內置类)
mindformers.tools.register.MindFormerModuleType (內置类)
mindformers.tools.register.MindFormerRegister (內置类)
mindformers.Trainer (內置类)
mindformers.TrainingArguments (內置类)
mindformers.wrapper.MFPipelineWithLossScaleCell (內置类)
mindformers.wrapper.MFTrainOneStepCell (內置类)
N
num_special_tokens_to_add() (mindformers.models.PreTrainedTokenizer 方法)
(mindformers.models.PreTrainedTokenizerFast 方法)
P
post_init() (mindformers.models.PreTrainedModel 方法)
post_process() (mindformers.models.multi_modal.ModalContentTransformTemplate 方法)
postprocess() (mindformers.generation.GenerationMixin 方法)
predict() (mindformers.Trainer 方法)
prepare_for_tokenization() (mindformers.models.PreTrainedTokenizer 方法)
process_predict_query() (mindformers.models.multi_modal.ModalContentTransformTemplate 方法)
process_train_item() (mindformers.models.multi_modal.ModalContentTransformTemplate 方法)
R
register() (mindformers.AutoConfig 类方法)
(mindformers.AutoModel 类方法)
(mindformers.AutoModelForCausalLM 类方法)
(mindformers.AutoModelForZeroShotImageClassification 类方法)
(mindformers.AutoProcessor 类方法)
(mindformers.AutoTokenizer 类方法)
(mindformers.tools.register.MindFormerRegister 类方法)
register_cls() (mindformers.tools.register.MindFormerRegister 类方法)
register_for_auto_class() (mindformers.models.PreTrainedModel 类方法)
S
save_pretrained() (mindformers.models.PretrainedConfig 方法)
(mindformers.models.PreTrainedModel 方法)
save_vocabulary() (mindformers.models.LlamaTokenizerFast 方法)
set_dataloader() (mindformers.TrainingArguments 方法)
set_logging() (mindformers.TrainingArguments 方法)
set_lr_scheduler() (mindformers.TrainingArguments 方法)
set_optimizer() (mindformers.TrainingArguments 方法)
set_save() (mindformers.TrainingArguments 方法)
set_training() (mindformers.TrainingArguments 方法)
set_truncation_and_padding() (mindformers.models.PreTrainedTokenizerFast 方法)
show_support_list() (mindformers.AutoConfig 类方法)
supported_modal() (mindformers.models.multi_modal.ModalContentTransformTemplate 类方法)
T
to_dict() (mindformers.models.PretrainedConfig 方法)
to_diff_dict() (mindformers.models.PretrainedConfig 方法)
to_json_file() (mindformers.models.PretrainedConfig 方法)
to_json_string() (mindformers.models.PretrainedConfig 方法)
tokenize() (mindformers.models.PreTrainedTokenizer 方法)
train() (mindformers.Trainer 方法)
train_new_from_iterator() (mindformers.models.PreTrainedTokenizerFast 方法)
U
update_post_processor() (mindformers.models.LlamaTokenizerFast 方法)
內
內置函数
mindformers.core.build_context()
mindformers.core.get_context()
mindformers.core.init_context()
mindformers.core.set_context()
mindformers.pipeline()
mindformers.run_check()