mindearth.cell.graphcast.graphcastnet 源代码

# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""GraphCastNet base class"""

from mindspore import nn, ops, Tensor
from .graphcast import Encoder, Processor, Decoder


[文档]class GraphCastNet(nn.Cell): r""" The GraphCast is based on graph neural networks and a novel high-resolution multi-scale mesh representation autoregressive model. The details can be found in `GraphCast: Learning skillful medium-range global weather forecasting <https://arxiv.org/pdf/2212.12794.pdf>`_. Args: vg_in_channels (int): The grid node dimensions. vg_out_channels (int): The grid node final dimensions. vm_in_channels (int): The mesh node dimensions. em_in_channels (int): The mesh edge dimensions. eg2m_in_channels (int): The grid to mesh edge dimensions. em2g_in_channels (int): The mesh to grid edge dimensions. latent_dims (int): The number of dims of hidden layers. processing_steps (int): The number of processing steps. g2m_src_idx (Tensor): The source node index of grid to mesh edges. g2m_dst_idx (Tensor): The destination node index of grid to mesh edges. m2m_src_idx (Tensor): The source node index of mesh to mesh edges. m2m_dst_idx (Tensor): The destination node index of mesh to mesh edges. m2g_src_idx (Tensor): The source node index of mesh to grid edges. m2g_dst_idx (Tensor): The destination node index of mesh to grid edges. mesh_node_feats (Tensor): The features of mesh nodes. mesh_edge_feats (Tensor): The features of mesh edges. g2m_edge_feats (Tensor): The features of grid to mesh edges. m2g_edge_feats (Tensor): The features of mesh to grid edges. per_variable_level_mean (Tensor): The mean of the per-variable-level inverse variance of time differences. per_variable_level_std (Tensor): The standard deviation of the per-variable-level inverse variance of time differences. recompute (bool, optional): Determine whether to recompute. Default: ``False`` . Inputs: - **input** (Tensor) - Tensor of shape :math:`(batch\_size, height\_size * width\_size, feature\_size)` . Outputs: - **output** (Tensor) - Tensor of shape :math:`(height\_size * width\_size, feature\_size)` . Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import numpy as np >>> import mindspore as ms >>> from mindspore import context, Tensor >>> from mindearth.cell.graphcast.graphcastnet import GraphCastNet >>> >>> mesh_node_num = 2562 >>> grid_node_num = 32768 >>> mesh_edge_num = 20460 >>> g2m_edge_num = 50184 >>> m2g_edge_num = 98304 >>> vm_in_channels = 3 >>> em_in_channels = 4 >>> eg2m_in_channels = 4 >>> em2g_in_channels = 4 >>> feature_num = 69 >>> g2m_src_idx = Tensor(np.random.randint(0, grid_node_num, size=[g2m_edge_num]), ms.int32) >>> g2m_dst_idx = Tensor(np.random.randint(0, mesh_node_num, size=[g2m_edge_num]), ms.int32) >>> m2m_src_idx = Tensor(np.random.randint(0, mesh_node_num, size=[mesh_edge_num]), ms.int32) >>> m2m_dst_idx = Tensor(np.random.randint(0, mesh_node_num, size=[mesh_edge_num]), ms.int32) >>> m2g_src_idx = Tensor(np.random.randint(0, mesh_node_num, size=[m2g_edge_num]), ms.int32) >>> m2g_dst_idx = Tensor(np.random.randint(0, grid_node_num, size=[m2g_edge_num]), ms.int32) >>> mesh_node_feats = Tensor(np.random.rand(mesh_node_num, vm_in_channels).astype(np.float32), ms.float32) >>> mesh_edge_feats = Tensor(np.random.rand(mesh_edge_num, em_in_channels).astype(np.float32), ms.float32) >>> g2m_edge_feats = Tensor(np.random.rand(g2m_edge_num, eg2m_in_channels).astype(np.float32), ms.float32) >>> m2g_edge_feats = Tensor(np.random.rand(m2g_edge_num, em2g_in_channels).astype(np.float32), ms.float32) >>> per_variable_level_mean = Tensor(np.random.rand(feature_num,).astype(np.float32), ms.float32) >>> per_variable_level_std = Tensor(np.random.rand(feature_num,).astype(np.float32), ms.float32) >>> grid_node_feats = Tensor(np.random.rand(grid_node_num, feature_num).astype(np.float32), ms.float32) >>> graphcast_model = GraphCastNet(vg_in_channels=feature_num, >>> vg_out_channels=feature_num, >>> vm_in_channels=vm_in_channels, >>> em_in_channels=em_in_channels, >>> eg2m_in_channels=eg2m_in_channels, >>> em2g_in_channels=em2g_in_channels, >>> latent_dims=512, >>> processing_steps=4, >>> g2m_src_idx=g2m_src_idx, >>> g2m_dst_idx=g2m_dst_idx, >>> m2m_src_idx=m2m_src_idx, >>> m2m_dst_idx=m2m_dst_idx, >>> m2g_src_idx=m2g_src_idx, >>> m2g_dst_idx=m2g_dst_idx, >>> mesh_node_feats=mesh_node_feats, >>> mesh_edge_feats=mesh_edge_feats, >>> g2m_edge_feats=g2m_edge_feats, >>> m2g_edge_feats=m2g_edge_feats, >>> per_variable_level_mean=per_variable_level_mean, >>> per_variable_level_std=per_variable_level_std) >>> out = graphcast_model(Tensor(grid_node_feats, ms.float32)) >>> print(out.shape) (32768, 69)) """ def __init__(self, vg_in_channels, vg_out_channels, vm_in_channels, em_in_channels, eg2m_in_channels, em2g_in_channels, latent_dims, processing_steps, g2m_src_idx, g2m_dst_idx, m2m_src_idx, m2m_dst_idx, m2g_src_idx, m2g_dst_idx, mesh_node_feats, mesh_edge_feats, g2m_edge_feats, m2g_edge_feats, per_variable_level_mean, per_variable_level_std, recompute=False): super(GraphCastNet, self).__init__() self.vg_out_channels = vg_out_channels self.mesh_node_feats = mesh_node_feats self.mesh_edge_feats = mesh_edge_feats self.g2m_edge_feats = g2m_edge_feats self.m2g_edge_feats = m2g_edge_feats self.per_variable_level_mean = per_variable_level_mean self.per_variable_level_std = per_variable_level_std self.encoder = Encoder(vg_in_channels=vg_in_channels, vm_in_channels=vm_in_channels, em_in_channels=em_in_channels, eg2m_in_channels=eg2m_in_channels, em2g_in_channels=em2g_in_channels, latent_dims=latent_dims, src_idx=g2m_src_idx, dst_idx=g2m_dst_idx, ) self.processor = Processor(node_in_channels=latent_dims, node_out_channels=latent_dims, edge_in_channels=latent_dims, edge_out_channels=latent_dims, processing_steps=processing_steps, latent_dims=latent_dims, src_idx=m2m_src_idx, dst_idx=m2m_dst_idx) self.decoder = Decoder(node_in_channels=latent_dims, node_out_channels=latent_dims, edge_in_channels=latent_dims, edge_out_channels=latent_dims, node_final_dims=vg_out_channels, latent_dims=latent_dims, src_idx=m2g_src_idx, dst_idx=m2g_dst_idx) if recompute: self.encoder.recompute() self.processor.recompute() self.decoder.recompute() def construct(self, grid_node_feats: Tensor): """GraphCast forward function. Args: grid_node_feats (Tensor): Input Tensor. """ grid_node_feats = ops.squeeze(grid_node_feats) vg, vm, em, _, em2g = self.encoder(grid_node_feats, self.mesh_node_feats, self.mesh_edge_feats, self.g2m_edge_feats, self.m2g_edge_feats) updated_vm, _ = self.processor(vm, em) node_feats = self.decoder(em2g, updated_vm, vg) output = (node_feats * self.per_variable_level_std + self.per_variable_level_mean) +\ grid_node_feats[:, -self.vg_out_channels:] return output