Source code for mindarmour.adv_robustness.detectors.ensemble_detector

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Ensemble Detector.
"""
import numpy as np

from mindarmour.utils.logger import LogUtil
from mindarmour.utils._check_param import check_numpy_param, \
    check_param_multi_types
from .detector import Detector

LOGGER = LogUtil.get_instance()
TAG = 'EnsembleDetector'


[docs]class EnsembleDetector(Detector): """ The ensemble detector uses a list of detectors to detect the adversarial examples from the input samples. Args: detectors (Union[tuple, list]): List of detector methods. policy (str): Decision policy, could be 'vote', 'all' or 'any'. Default: 'vote' Examples: >>> from mindspore.ops.operations import Add >>> from mindspore.nn import Cell >>> from mindspore import Model >>> from mindarmour.adv_robustness.detectors import ErrorBasedDetector >>> from mindarmour.adv_robustness.detectors import RegionBasedDetector >>> from mindarmour.adv_robustness.detectors import EnsembleDetector >>> class Net(Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.add = Add() ... def construct(self, inputs): ... return self.add(inputs, inputs) >>> class AutoNet(Cell): ... def __init__(self): ... super(AutoNet, self).__init__() ... self.add = Add() ... def construct(self, inputs): ... return self.add(inputs, inputs) >>> np.random.seed(6) >>> adv = np.random.rand(4, 4).astype(np.float32) >>> model = Model(Net()) >>> auto_encoder = Model(AutoNet()) >>> random_label = np.random.randint(10, size=4) >>> labels = np.eye(10)[random_label] >>> magnet_detector = ErrorBasedDetector(auto_encoder) >>> region_detector = RegionBasedDetector(model) >>> region_detector.fit(adv, labels) >>> detectors = [magnet_detector, region_detector] >>> detector = EnsembleDetector(detectors) >>> adv_ids = detector.detect(adv) """ def __init__(self, detectors, policy="vote"): super(EnsembleDetector, self).__init__() self._detectors = check_param_multi_types('detectors', detectors, [list, tuple]) self._num_detectors = len(detectors) self._policy = policy
[docs] def fit(self, inputs, labels=None): """ Fit detector like a machine learning model. This method is not available in this class. Args: inputs (numpy.ndarray): Data to calculate the threshold. labels (numpy.ndarray): Labels of data. Default: None. Raises: NotImplementedError: This function is not available in ensemble. """ msg = 'The function fit() is not available in the class ' \ '`EnsembleDetector`.' LOGGER.error(TAG, msg) raise NotImplementedError(msg)
[docs] def detect(self, inputs): """ Detect adversarial examples from input samples. Args: inputs (numpy.ndarray): Input samples. Returns: list[int], whether a sample is adversarial. if res[i]=1, then the input sample with index i is adversarial. Raises: ValueError: If policy is not supported. """ inputs = check_numpy_param('inputs', inputs) x_len = inputs.shape[0] counts = np.zeros(x_len) res = np.zeros(x_len, dtype=np.int) for detector in list(self._detectors): idx = detector.detect(inputs) counts[idx] += 1 if self._policy == "vote": idx_adv = np.argwhere(counts > self._num_detectors / 2) elif self._policy == "all": idx_adv = np.argwhere(counts == self._num_detectors) elif self._policy == "any": idx_adv = np.argwhere(counts > 0) else: msg = 'Policy {} is not supported.'.format(self._policy) LOGGER.error(TAG, msg) raise ValueError(msg) res[idx_adv] = 1 return list(res)
[docs] def detect_diff(self, inputs): """ This method is not available in this class. Args: inputs (Union[numpy.ndarray, list, tuple]): Data been used as references to create adversarial examples. Raises: NotImplementedError: This function is not available in ensemble. """ msg = 'The function detect_diff() is not available in the class ' \ '`EnsembleDetector`.' LOGGER.error(TAG, msg) raise NotImplementedError(msg)
[docs] def transform(self, inputs): """ Filter adversarial noises in input samples. This method is not available in this class. Args: inputs (Union[numpy.ndarray, list, tuple]): Data been used as references to create adversarial examples. Raises: NotImplementedError: This function is not available in ensemble. """ msg = 'The function transform() is not available in the class ' \ '`EnsembleDetector`.' LOGGER.error(TAG, msg) raise NotImplementedError(msg)