# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""IMDBBinary"""
#pylint: disable=W0702
import random
from typing import Union
import os
import os.path as osp
import urllib.request
import zipfile
import numpy as np
from mindspore_gl.graph import MindHomoGraph
[文档]class IMDBBinary:
"""
IMDBBinary Dataset, a source dataset for reading and parsing IMDBBinary dataset.
About IMDBBinary dataset:
IMDBBinary Dataset, a source dataset for reading and parsing IMDBBinary dataset. IMDB-BINARY is a movie
collaboration dataset that consists of the ego-networks of 1,000 actors/actresses who played roles in movies
in IMDB. In each graph, nodes represent actors/actress, and there is an edge between them if they appear in the
same movie. These graphs are derived from the Action and Romance genres.
Statistics:
- Nodes: 19773
- Edges: 193062
- Number of Graphs: 1000
- Number of Classes: 2
- Label split:
- Train: 800
- Valid: 200
Dataset can be download here: <https://ls11-www.cs.tu-dortmund.de/people/morris/graphkerneldatasets/IMDB-BINARY.zip>
You can organize the dataset files into the following directory structure and read by `process` API.
.. code-block::
.
├── IMDB-BINARY_A.txt
├── IMDB-BINARY_graph_indicator.txt
└── IMDB-BINARY_graph_labels.txt
Args:
root(str): path to the root directory that contains imdb_binary_with_mask.npz
Raises:
TypeError: if `root` is not a str.
RuntimeError: if `root` does not contain data files.
Examples:
>>> from mindspore_gl.dataset.imdb_binary import IMDBBinary
>>> root = "path/to/imdb_binary"
>>> dataset = IMDBBinary(root)
"""
url = 'https://ls11-www.cs.tu-dortmund.de/people/morris/graphkerneldatasets/IMDB-BINARY.zip'
def __init__(self, root):
if not isinstance(root, str):
raise TypeError(f"For '{self.cls_name}', the 'root' should be a str, "
f"but got {type(root)}.")
self._root = root
self._path = osp.join(root, 'imdb_binary_with_mask.npz')
self._edge_array = None
self._graphs = None
self._node_feat = None
self._graph_label = None
self._graph_nodes = None
self._graph_edges = None
self._train_mask = None
self._val_mask = None
self._test_mask = None
if osp.exists(self._path):
self._load()
else:
path, file_name = self._download(self._root)
self._process(path, file_name)
self._load()
def _download(self, save_dir):
"""Download dataset"""
file = self.url.rpartition('/')[-1]
path = osp.join(save_dir, file)
unzip_name = file.rpartition('.')[0]
unzip_path = osp.join(save_dir, unzip_name)
if os.path.exists(unzip_path):
return unzip_path, unzip_name
data = urllib.request.urlopen(self.url)
with open(path, 'wb') as f:
while True:
chunk = data.read(10*1024*1024)
if not chunk:
break
f.write(chunk)
with zipfile.ZipFile(path, 'r') as f:
f.extractall(save_dir)
os.remove(path)
return unzip_path, unzip_name
def _process(self, path, file_name):
"""Process data"""
label_file_name = file_name+'_graph_labels.txt'
label_path = osp.join(path, label_file_name)
self._graph_label = np.loadtxt(label_path)
indicator_file_name = file_name+'_graph_indicator.txt'
indicator_path = osp.join(path, indicator_file_name)
graph_per_nodes = np.loadtxt(indicator_path, dtype=int)
num_nodes = len(graph_per_nodes)
self._graph_nodes = np.bincount(graph_per_nodes).cumsum().tolist()
self._node_feat = np.zeros((num_nodes, 136))
edges_file_name = file_name + '_A.txt'
edges_path = osp.join(path, edges_file_name)
load_edges = np.loadtxt(edges_path, delimiter=',', dtype=[('src', int), ('dst', int)])
start = 0
self._graph_edges = [0]
adj_coo_row, adj_coo_col = [], []
for i, node_count in enumerate(self._graph_nodes[1:]):
for idx in range(start, len(load_edges)):
if load_edges[idx][0] > node_count:
break
elif idx == len(load_edges) - 1:
idx += 1
break
adj_list = load_edges[start: idx].tolist()
adj_list = list(set(adj_list))
adj_list = sorted(adj_list, key=lambda x: [x[0], x[1]])
src = [x[0] - 1 for x in adj_list]
tag = [x[1] - 1 for x in adj_list]
adj_coo_col += src
adj_coo_row += tag
last_edge = self._graph_edges[-1]
self._graph_edges.append(last_edge + len(adj_list))
start = idx
mask_idx = list(range(len(self._graph_label)))
random.shuffle(mask_idx)
train_mask = [0] * len(mask_idx)
for idx in mask_idx[len(mask_idx) // 10:]:
train_mask[idx] = 1
val_mask = [0] * len(mask_idx)
for idx in mask_idx[:len(mask_idx) // 10]:
val_mask[idx] = 1
edge_array = np.array([adj_coo_col, adj_coo_row])
for i in range(1, len(self._graph_nodes)):
start = self._graph_nodes[i - 1]
end = self._graph_nodes[i]
for j in range(start, end):
self._node_feat[j, j - start] = 1
np.savez(self._path, edge_array=edge_array, train_mask=train_mask, val_mask=val_mask,
node_feat=self._node_feat, graph_label=self._graph_label,
graph_edges=self._graph_edges, graph_nodes=self._graph_nodes)
def _load(self):
"""Load the saved npz dataset from files."""
self._npz_file = np.load(self._path)
self._edge_array = self._npz_file['edge_array'].astype(np.int32)
self._graph_edges = self._npz_file['graph_edges'].astype(np.int32)
self._graph_nodes = self._npz_file['graph_nodes'].astype(np.int32)
self._graphs = np.array(list(range(len(self._graph_edges))))
@property
def num_features(self):
"""
Feature size of each node
Returns:
int, the number of feature size
Examples:
>>> #dataset is an instance object of Dataset
>>> num_features = dataset.num_features
"""
return self.node_feat.shape[-1]
@property
def num_edge_features(self):
"""
Feature size of each edge
Returns:
int, the number of feature size
Examples:
>>> #dataset is an instance object of Dataset
>>> num_edge_features = dataset.num_edge_features
"""
return 0
@property
def num_classes(self):
"""
Number of label classes
Returns:
int, the number of classes
Examples:
>>> #dataset is an instance object of Dataset
>>> num_classes = dataset.num_classes
"""
return len(np.unique(self.graph_label))
@property
def train_mask(self):
"""
Mask of training nodes
Returns:
numpy.ndarray, array of mask
Examples:
>>> #dataset is an instance object of Dataset
>>> train_mask = dataset.train_mask
"""
if self._train_mask is None:
self._train_mask = self._npz_file['train_mask']
return self._train_mask
@property
def val_mask(self):
"""
Mask of validation nodes
Returns:
numpy.ndarray, array of mask
Examples:
>>> #dataset is an instance object of Dataset
>>> val_mask = dataset.val_mask
"""
if self._val_mask is None:
self._val_mask = self._npz_file['val_mask']
return self._val_mask
@property
def graph_nodes(self):
"""
Accumulative graph nodes count
Returns:
numpy.ndarray, array of accumulative nodes
Examples:
>>> #dataset is an instance object of Dataset
>>> val_mask = dataset.graph_nodes
"""
if self._graph_nodes is None:
self._graph_nodes = self._npz_file['graph_nodes']
return self._graph_nodes
@property
def graph_edges(self):
"""
Accumulative graph edges count
Returns:
numpy.ndarray, array of accumulative edges
Examples:
>>> #dataset is an instance object of Dataset
>>> val_mask = dataset.graph_edges
"""
if self._graph_edges is None:
self._graph_edges = self._npz_file['graph_edges'].astype(np.int32)
return self._graph_edges
@property
def train_graphs(self):
"""
Train graph id
Returns:
numpy.ndarray, array of train graph id
Examples:
>>> #dataset is an instance object of Dataset
>>> train_graphs = dataset.train_graphs
"""
return (np.nonzero(self.train_mask)[0]).astype(np.int32)
@property
def val_graphs(self):
"""
Valid graph id
Returns:
numpy.ndarray, array of valid graph id
Examples:
>>> #dataset is an instance object of Dataset
>>> val_graphs = dataset.val_graphs
"""
return (np.nonzero(self.val_mask)[0]).astype(np.int32)
@property
def graph_count(self):
"""
Total graph numbers
Returns:
int, numbers of graph
Examples:
>>> #dataset is an instance object of Dataset
>>> graph_count = dataset.graph_count
"""
return len(self.graph_label)
@property
def node_feat(self):
"""
Node features
Returns:
numpy.ndarray, array of node feature
Examples:
>>> #dataset is an instance object of Dataset
>>> node_feat = dataset.node_feat
"""
if self._node_feat is None:
self._node_feat = self._npz_file["node_feat"]
return self._node_feat
[文档] def graph_feat(self, graph_idx):
"""
graph features.
Args:
graph_idx (int): index of graph.
Returns:
- numpy.ndarray, node feature of graph.
Examples:
>>> #dataset is an instance object of Dataset
>>> graph_feat = dataset.graph_feat(graph_idx)
"""
return self.node_feat[self.graph_nodes[graph_idx]: self.graph_nodes[graph_idx + 1]]
@property
def graph_label(self):
"""
Graph label
Returns:
numpy.ndarray, array of graph label
Examples:
>>> #dataset is an instance object of Dataset
>>> graph_label = dataset.graph_label
"""
if self._graph_label is None:
self._graph_label = self._npz_file["graph_label"]
return self._graph_label.astype(np.int32)
def __getitem__(self, idx) -> Union[MindHomoGraph, np.ndarray]:
assert idx < self.graph_count, "Index out of range"
res = MindHomoGraph()
# reindex to 0
coo_array = self._edge_array[:, self.graph_edges[idx]: self.graph_edges[idx + 1]] - self.graph_nodes[idx]
res.set_topo_coo(coo_array)
res.node_count = self.graph_nodes[idx + 1] - self.graph_nodes[idx]
res.edge_count = self.graph_edges[idx + 1] - self.graph_edges[idx]
return res