mindspore_gl.nn.SAGPooling
- class mindspore_gl.nn.SAGPooling(in_channels: int, GNN=GCNConv2, activation=ms.nn.Tanh, multiplier=1.0)[source]
The self-attention pooling operator. From the Self-Attention Graph Pooling and Understanding Attention and Generalization in Graph Neural Networks papers.
\[ \begin{align}\begin{aligned}\mathbf{y} &= \textrm{GNN}(\mathbf{X}, \mathbf{A})\\\mathbf{i} &= \mathrm{top}_k(\mathbf{y})\\\mathbf{X}^{\prime} &= (\mathbf{X} \odot \mathrm{tanh}(\mathbf{y}))_{\mathbf{i}}\\\mathbf{A}^{\prime} &= \mathbf{A}_{\mathbf{i},\mathbf{i}}\end{aligned}\end{align} \]- Parameters
in_channels (int) – Size of each input sample.
GNN (GNNCell) – A graph neural network layer for calculating projection scores. only GCNConv2 is supported. Default: mindspore_gl.nn.conv.GCNConv2.
activation (Cell) – The nonlinearity to use. Default: mindspore.nn.Tanh.
multiplier (Float) – A scalar for scaling node feature. Default: 1.
- Inputs:
x (Tensor) - The input node features to be updated. The shape is \((N, D)\) where \(N\) is the number of nodes, and \(D\) is the feature size of nodes, when attn=None, D should be equal to in_feat_size in Args.
attn (Tensor) - The input node features for calculating projection score. The shape is \((N, D_{in})\) where \(N\) is the number of nodes, and \(D_{in}\) should be equal to in_feat_size in Args. attn can be None, if x is expected to be used for calculating projection score.
node_num (Int) - total number of nodes in g.
perm_num (Int) - expected k for topk nodes filtering.
g (BatchedGraph) - The input graph.
- Outputs:
x (Tensor) - The updated node features. The shape is \((2, M, D_{out})\), where \(M\) equals to perm_num in Inputs, and \(D_{out}\) equals to D in Inputs.
src_perm (Tensor) - The updated src nodes.
dst_perm (Tensor) - The updated dst nodes.
perm (Tensor) - The node index for topk nodes before updating node index. The shape is \(M\), where \(M\) equals to perm_num in Inputs.
perm_score (Tensor) - The projection score for updated nodes.
- Raises
TypeError – If in_feat_size or out_size is not an int.
- Supported Platforms:
Ascend
GPU
Examples
>>> import numpy as np >>> import mindspore as ms >>> from mindspore_gl.nn import SAGPooling >>> from mindspore_gl import BatchedGraphField >>> node_feat = ms.Tensor([[1, 2, 3, 4], [2, 4, 1, 3], [1, 3, 2, 4], ... [9, 7, 5, 8], [8, 7, 6, 5], [8, 6, 4, 6], [1, 2, 1, 1]], ... ms.float32) >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([0, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ver_subgraph_idx, ... edge_subgraph_idx, graph_mask) >>> net = SAGPooling(4) >>> feature, src, dst, ver_subgraph, edge_subgraph, perm, perm_score = net(node_feat, None, 2, ... *batched_graph_field.get_batched_graph()) >>> print(feature.shape) (2, 2, 4)