mindspore_gl.nn.MeanConv
- class mindspore_gl.nn.MeanConv(in_feat_size: int, out_feat_size: int, feat_drop=0.6, bias=False, norm=None, activation=None)[source]
GraphSAGE Layer. From the paper Inductive Representation Learning on Large Graphs .
\[ \begin{align}\begin{aligned}\begin{split}h_{\mathcal{N}(i)}^{(l+1)} = \mathrm{aggregate} \left(\{h_{j}^{l}, \forall j \in \mathcal{N}(i) \}\right) \\\end{split}\\\begin{split}h_{i}^{(l+1)} = \sigma \left(W \cdot \mathrm{concat} (h_{i}^{l}, h_{\mathcal{N}(i)}^{l+1}) \right)\\\end{split}\\h_{i}^{(l+1)} = \mathrm{norm}(h_{i}^{l})\end{aligned}\end{align} \]If weights are provided on each edge, the weighted graph convolution is defined as:
\[h_{\mathcal{N}(i)}^{(l+1)} = \mathrm{aggregate} \left(\{e_{ji} h_{j}^{l}, \forall j \in \mathcal{N}(i) \}\right)\]- Parameters
in_feat_size (int) – Input node feature size.
out_feat_size (int) – Output node feature size.
feat_drop (float) – The keep rate, greater than 0 and less equal than 1. E.g. dropout=0.9, dropping out 10% of input units. Default: 0.6.
bias (bool) – Whether use bias. Default: False.
norm (mindspore.nn.Cell) – Normalization function Cell. Default: None.
activation (mindspore.nn.Cell) – Activation function Cell. Default: None.
- Inputs:
x (Tensor) - The input node features. The shape is \((N,D\_in)\) where \(N\) is the number of nodes and \(D\_in\) could be of any shape.
self_idx (Tensor) - The node idx. The shape is \((N\_v,)\) where \(N\_v\) is the number of self nodes.
g (Graph) - The input graph.
- Outputs:
Tensor, the output feature of shape \((N\_v,D\_out)\). where \(N\_v\) is the number of self nodes and \(D\_out\) could be of any shape
- Raises
TypeError – If in_feat_size or out_feat_size is not an int.
TypeError – If bias is not a bool.
TypeError – If norm is not a mindspore.nn.Cell.
ValueError – If dropout is not in range (0.0, 1.0]
ValueError – If activation is not tanh or relu.
- Supported Platforms:
Ascend
GPU
Examples
>>> import mindspore as ms >>> from mindspore_gl.nn import MeanConv >>> from mindspore_gl import GraphField >>> n_nodes = 4 >>> n_edges = 7 >>> feat_size = 4 >>> src_idx = ms.Tensor([0, 1, 1, 2, 2, 3, 3], ms.int32) >>> dst_idx = ms.Tensor([0, 0, 2, 1, 3, 0, 1], ms.int32) >>> ones = ms.ops.Ones() >>> feat = ones((n_nodes, feat_size), ms.float32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> gmmconv = MeanConv(in_feat_size=4, out_feat_size=2, activation='relu') >>> self_idx = ms.Tensor([0, 1], ms.int32) >>> res = gmmconv(feat, self_idx, *graph_field.get_graph()) >>> print(res.shape) (2, 2)