mindspore_gl.dataset.Enzymes
- class mindspore_gl.dataset.Enzymes(root)[source]
Enzymes Dataset, a source dataset for reading and parsing Enzymes dataset.
About Enzymes dataset:
ENZYMES is a dataset of protein tertiary structures obtained from (Borgwardt et al., 2005) consisting of 600 enzymes from the BRENDA enzyme database (Schomburg et al., 2004). In this case the task is to correctly assign each enzyme to one of the 6 EC top-level classes.
Statistics:
Graphs: 600
Nodes: 32.63
Edges: 62.14
Number of Classes: 6
Dataset can be download here: ENZYMES .
You can organize the dataset files into the following directory structure and read by preprocess API.
. ├── ENZYMES_A.txt ├── ENZYMES_graph_indicator.txt ├── ENZYMES_graph_labels.txt ├── ENZYMES_node_attributes.txt ├── ENZYMES_node_labels.txt └── README.txt
- Parameters
root (str) – path to the root directory that contains enzymes_with_mask.npz.
- Raises
TypeError – if root is not a str.
RuntimeError – if root does not contain data files.
Examples
>>> from mindspore_gl.dataset import Enzymes >>> root = "path/to/enzymes" >>> dataset = Enzymes(root)
- property graph_count
Total graph numbers.
- Returns
int, numbers of graph.
Examples
>>> #dataset is an instance object of Dataset >>> node_feat = dataset.node_feat
- property graph_edges
Accumulative graph edges count.
- Returns
numpy.ndarray, array of accumulative edges.
Examples
>>> #dataset is an instance object of Dataset >>> val_mask = dataset.graph_edges
- graph_feat(graph_idx)[source]
graph features.
- Parameters
graph_idx (int) – index of graph.
- Returns
numpy.ndarray, node feature of graph.
Examples
>>> #dataset is an instance object of Dataset >>> graph_feat = dataset.graph_feat(graph_idx)
- property graph_label
Graph label.
- Returns
numpy.ndarray, array of graph label.
Examples
>>> #dataset is an instance object of Dataset >>> node_feat = dataset.graph_label
- property graph_nodes
Accumulative graph nodes count.
- Returns
numpy.ndarray, array of accumulative nodes.
Examples
>>> #dataset is an instance object of Dataset >>> val_mask = dataset.graph_nodes
- property label_dim
Number of label classes.
- Returns
int, the number of classes.
Examples
>>> #dataset is an instance object of Dataset >>> label_dim = dataset.label_dim
- property max_num_node
Max number of nodes in one graph.
- Returns
int, the max number of node number.
Examples
>>> #dataset is an instance object of Dataset >>> max_num_node = dataset.max_num_node
- property node_feat
Node features.
- Returns
numpy.ndarray, array of node feature.
Examples
>>> #dataset is an instance object of Dataset >>> node_feat = dataset.node_feat
- property num_features
Feature size of each node.
- Returns
int, the number of feature size.
Examples
>>> #dataset is an instance object of Dataset >>> num_features = dataset.num_features
- property test_graphs
Test graph id.
- Returns
numpy.ndarray, array of test graph id.
Examples
>>> #dataset is an instance object of Dataset >>> test_graphs = dataset.test_graphs
- property test_mask
Mask of test nodes.
- Returns
numpy.ndarray, array of mask.
Examples
>>> #dataset is an instance object of Dataset >>> test_mask = dataset.test_mask
- property train_graphs
Train graph id.
- Returns
numpy.ndarray, array of train graph id.
Examples
>>> #dataset is an instance object of Dataset >>> train_graphs = dataset.train_graphs
- property train_mask
Mask of training nodes.
- Returns
numpy.ndarray, array of mask.
Examples
>>> #dataset is an instance object of Dataset >>> train_mask = dataset.train_mask
- property val_graphs
Valid graph id.
- Returns
numpy.ndarray, array of valid graph id.
Examples
>>> #dataset is an instance object of Dataset >>> val_graphs = dataset.val_graphs
- property val_mask
Mask of validation nodes.
- Returns
numpy.ndarray, array of mask.
Examples
>>> #dataset is an instance object of Dataset >>> val_mask = dataset.val_mask