# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""GoldenStick."""
import abc
import enum
import os.path
from mindspore.nn.cell import Cell
from mindspore.train.callback import Callback
from mindspore import export, context
from mindspore import log as logger
from mindspore_gs.validator import Validator
class Backend(enum.Enum):
MS = 0
FAKE_QUANT = 1
GE_ASCEND = 2
[docs]class CompAlgo(abc.ABC):
"""
Base class of algorithms in GoldenStick.
Args:
config (dict): User config for network compression, default is ``None``. Algorithm config specification
is default by derived class, base attributes are listed below:
- save_mindir (bool): If ``True``, export MindIR automatically after training, else not. Default: ``False``.
- save_mindir_path (str): The path to export MindIR, the path includes the directory and file name, which
can be a relative path or an absolute path, the user needs to ensure write permission.
Default: ``'./network'``.
"""
def __init__(self, config=None):
if config is None:
config = {}
Validator.check_value_type("config", config, [dict], self.__class__.__name__)
self._is_cpu = context.get_context('device_target') == "CPU"
self._config = None
self._create_config()
self._update_common_config(config)
self._update_config_from_dict(config)
def _create_config(self):
"""Create base config. If derived class has extra attributes, Should be over-writed."""
self._config = CompAlgoConfig()
def _update_common_config(self, config: dict):
"""Create base config from a dict."""
self.set_save_mindir(config.get("save_mindir", False))
if self._config.save_mindir:
self.set_save_mindir_path(config.get("save_mindir_path", "./network"))
def _update_config_from_dict(self, config: dict):
"""Update config for specific algo. If derived class has extra attributes, Should be over-writed."""
[docs] @abc.abstractmethod
def apply(self, network: Cell) -> Cell:
"""
Define how to compress input `network`. This method must be overridden by all subclasses.
Args:
network (Cell): Network to be compressed.
Returns:
Compressed network.
"""
raise NotImplementedError
[docs] def callbacks(self, *args, **kwargs) -> [Callback]:
"""
Define what task need to be done when training. Must be called at the end of child callbacks.
Args:
args (Union[list, tuple, optional]): Arguments passed to the function.
kwargs (Union[dict, optional]): The keyword arguments.
Returns:
List of instance of Callbacks.
"""
cb = []
if self._config.save_mindir:
cb.append(ExportMindIRCallBack(self, os.path.realpath(self._config.save_mindir_path)))
return cb
[docs] def set_save_mindir(self, save_mindir: bool):
"""
Set whether to automatically export MindIR after training.
Args:
save_mindir (bool): If ``True``, export MindIR automatically after training, else not.
Raises:
TypeError: If `need_save` is not bool.
Examples:
>>> import mindspore as ms
>>> from mindspore_gs.quantization import SimulatedQuantizationAwareTraining as SimQAT
>>> import numpy as np
>>> ## 1) Define network to be trained
>>> network = LeNet(10)
>>> ## 2) Define MindSpore Golden Stick Algorithm, here we use base algorithm.
>>> algo = SimQAT()
>>> ## 3) Enable automatically export MindIR after training.
>>> algo.set_save_mindir(save_mindir=True)
>>> ## 4) Set MindIR output path.
>>> algo.set_save_mindir_path(save_mindir_path="./lenet")
>>> ## 5) Apply MindSpore Golden Stick algorithm to origin network.
>>> network = algo.apply(network)
>>> ## 6) Set up Model.
>>> train_dataset = create_custom_dataset()
>>> net_loss = ms.nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
>>> net_opt = ms.nn.Momentum(network.trainable_params(), 0.01, 0.9)
>>> model = ms.Model(network, net_loss, net_opt, metrics={"Accuracy": ms.train.Accuracy()})
>>> ## 7) Config callback in model.train, start training, then MindIR will be exported.
>>> model.train(1, train_dataset, callbacks=algo.callbacks())
"""
Validator.check_bool(save_mindir, "save_mindir", self.__class__.__name__)
self._config.save_mindir = save_mindir
[docs] def set_save_mindir_path(self, save_mindir_path: str):
"""
Set the path to export MindIR, only takes effect if `save_mindir` is ``True``.
Args:
save_mindir_path (str): The path to export MindIR, the path includes the directory and file name, which can
be a relative path or an absolute path, the user needs to ensure write permission.
Raises:
ValueError: if `save_mindir_path` is not Non-empty str.
"""
if not self._config.save_mindir:
logger.warning("When you want to export MindIR automatically, 'save_mindir' should be set True before "
"setting MindIR path")
if save_mindir_path is None or not isinstance(save_mindir_path, str) or save_mindir_path.strip() == "":
raise ValueError(f"For {self.__class__.__name__}, 'save_mindir_path' should be Non-empty string but got"
f" {save_mindir_path}.")
self._config.save_mindir_path = os.path.realpath(save_mindir_path)
[docs] def convert(self, net_opt: Cell, ckpt_path="") -> Cell:
"""
Define how to convert a compressed network to a standard network before exporting to MindIR.
Args:
net_opt (Cell): Network to be converted which is transformed by `CompAlgo.apply`.
ckpt_path (str): Path to checkpoint file for `net_opt`. Default is ``""``, which means not loading
checkpoint file to `net_opt`. this parameter would be deprecated in future version.
Returns:
An instance of Cell represents converted network.
Examples:
>>> from mindspore_gs.quantization import SimulatedQuantizationAwareTraining as SimQAT
>>> ## 1) Define network to be trained
>>> network = LeNet(10)
>>> ## 2) Define MindSpore Golden Stick Algorithm, here we use base algorithm.
>>> algo = SimQAT()
>>> ## 3) Apply MindSpore Golden Stick algorithm to origin network.
>>> network = algo.apply(network)
>>> ## 4) Then you can start training, after which you can convert a compressed network to a standard
>>> ## network, there are two ways to do that.
>>> ## 4.1) Convert without checkpoint.
>>> net_deploy = algo.convert(network)
>>> ## 4.2) Convert with checkpoint.
>>> net_deploy = algo.convert(network, ckpt_path)
"""
return net_opt
[docs] def loss(self, loss_fn: callable) -> callable:
"""
Define how to adjust loss-function for algorithm. Subclass is not need to overridden this method if current
algorithm not care loss-function.
Args:
loss_fn (callable): Original loss function.
Returns:
Adjusted loss function.
"""
return loss_fn
class CompAlgoConfig:
"""
Config for CompAlgo.
"""
def __init__(self):
"""Init with default value."""
self.save_mindir = False
self.save_mindir_path = "./network"
class ExportMindIRCallBack(Callback):
"""Export MindIR after training automatically."""
def __init__(self, algo: CompAlgo, save_mindir_path: str):
"""
Init callback.
Args:
algo (CompAlgo): Mindspore Golden stick algorithm.
save_mindir_path (str): The path to export MindIR, the path includes the directory and file name, which can
be a relative path or an absolute path, the user needs to ensure write permission.
"""
self._algo = algo
self._save_mindir_path = save_mindir_path
def on_train_end(self, run_context):
"""Called on train end, convert net and export MindIR."""
cb_params = run_context.original_args()
net_deploy = self._algo.convert(cb_params.network)
export(net_deploy, cb_params.train_dataset, file_name=self._save_mindir_path, file_format="MINDIR")