mindspore.export
- mindspore.export(net, *inputs, file_name, file_format, **kwargs)[源代码]
将MindSpore网络模型导出为指定格式的文件。
说明
当导出文件格式为AIR、ONNX时,单个Tensor的大小不能超过2GB。
当 file_name 没有后缀时,系统会根据 file_format 自动添加后缀。
现已支持将
mindspore.jit()
修饰的函数导出成MINDIR格式文件。当导出
mindspore.jit()
修饰的函数时,函数内不能包含有类属性参与的计算。AIR格式已弃用,将被删除。请使用其他格式或者MindSpore Lite进行离线推理。
- 参数:
net (Union[Cell, function]) - MindSpore网络结构。
inputs (Union[Tensor, Dataset, List, Tuple, Number, Bool]) - 网络的输入,如果网络有多个输入,需要一同传入。当传入的类型为 Dataset 时,将会把数据预处理行为同步保存起来。需要手动调整batch的大小,当前仅支持获取 Dataset 的 image 列。
file_name (str) - 导出模型的文件名称。
file_format (str) - MindSpore目前支持导出"AIR","ONNX"和"MINDIR"格式的模型。
AIR - Ascend Intermediate Representation。一种Ascend模型的中间表示格式。推荐的输出文件后缀是".air"。
ONNX - Open Neural Network eXchange。一种针对机器学习所设计的开放式的文件格式。推荐的输出文件后缀是".onnx"。
MINDIR - MindSpore Native Intermediate Representation for Anf。一种MindSpore模型的中间表示格式。推荐的输出文件后缀是".mindir"。MINDIR格式不支持带有字典属性的算子导出。
kwargs (dict) - 配置选项字典。
enc_key (byte) - 用于加密的字节类型密钥,有效长度为16、24或者32。
enc_mode (Union[str, function]) - 指定加密模式,当设置 enc_key 时启用。
对于 'AIR'和 'ONNX'格式的模型,当前仅支持自定义加密导出。
对于 'MINDIR'格式的模型,支持的加密选项有: 'AES-GCM', 'AES-CBC', 'SM4-CBC'和用户自定义加密算法。默认值:
"AES-GCM"
。关于使用自定义加密导出的详情,请查看 教程。
dataset (Dataset) - 指定数据集的预处理方法,用于将数据集的预处理导入MindIR。
obf_config (dict) - 模型混淆配置选项字典。
type (str) - 混淆类型,目前支持动态混淆,即 'dynamic' 。
obf_ratio (Union[str, float]) - 全模型算子的混淆比例,可取浮点数(0, 1]或者字符串
"small"
、"medium"
、"large"
。"small"
、"medium"
、"large"
分别对应于 0.1、0.3、0.6。customized_func (function) - 在自定义函数模式下需要设置的Python函数,用来控制混淆结构中的选择分支走向。它的返回值需要是bool类型,且是恒定的,用户可以参考不透明谓词进行设置(请查看 动态混淆教程 中的 my_func())。如果设置了 customized_func ,那么在使用 load 接口导入模型的时候,需要把这个函数也传入。
obf_random_seed (int) - 混淆随机种子,是一个取值范围为(0, 9223372036854775807]的整数,不同的随机种子会使模型混淆后的结构不同。如果用户设置了 obf_random_seed ,那么在部署混淆模型的时候,需要在调用
mindspore.nn.GraphCell
接口中传入 obf_random_seed 。需要注意的是,如果用户同时设置了 customized_func 和 obf_random_seed ,那么后一种模式将会被采用。
custom_func (function) - 用户自定义的导出策略的函数。该函数会在网络导出时,对模型使用该函数进行自定义处理。需要注意,当前仅支持对 format 为 MindIR 的文件使用 custom_func ,且自定义函数仅接受一个代表 MindIR 文件 Proto 对象的入参。当使用 custom_func 对模型进行修改时,需要保证修改后模型的正确性,否则可能导致模型加载失败或功能错误。默认值:
None
。
样例:
>>> import mindspore as ms >>> import numpy as np >>> from mindspore import Tensor >>> >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/r2.4.1/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> input_tensor = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32)) >>> ms.export(net, input_tensor, file_name='lenet', file_format='MINDIR') >>> >>> # Export model in MindIR format and modified the model info using custom_func >>> # The custom_func only support one input representing the Proto object of the model >>> # And custom_func does not support return value >>> def _custom_func(mindir_model): ... mindir_model.producer_name = "test11111" ... mindir_model.producer_version = "11.0" ... mindir_model.user_info["version"] = "11.0" >>> ms.export(net, input_tensor, file_name="lenet", file_format='MINDIR', custom_func=_custom_func)
- 教程样例: