文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

下载Notebook下载样例代码查看源文件

基本介绍 || 快速入门 || 张量 Tensor || 数据加载与处理 || 网络构建 || 函数式自动微分 || 模型训练 || 保存与加载 || 使用静态图加速 || 自动混合精度 ||

保存与加载

上一章节主要介绍了如何调整超参数,并进行网络模型训练。在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,本章节我们将介绍如何保存与加载模型。

[1]:
import numpy as np
import mindspore
from mindspore import nn
from mindspore import Tensor
[2]:
def network():
    model = nn.SequentialCell(
                nn.Flatten(),
                nn.Dense(28*28, 512),
                nn.ReLU(),
                nn.Dense(512, 512),
                nn.ReLU(),
                nn.Dense(512, 10))
    return model

保存和加载模型权重

保存模型使用save_checkpoint接口,传入网络和指定的保存路径:

[3]:
model = network()
mindspore.save_checkpoint(model, "model.ckpt")

要加载模型权重,需要先创建相同模型的实例,然后使用load_checkpointload_param_into_net方法加载参数。

[4]:
model = network()
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)
[4]:
[]
  • param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。

  • 当环境中安装有MindX DL(昇腾深度学习组件)6.0及以上版本时,默认启动MindIO加速CheckPoint功能,详情查看MindIO介绍。MindX DL在此处下载。

保存和加载MindIR

除Checkpoint外,MindSpore提供了云侧(训练)和端侧(推理)统一的中间表示(Intermediate Representation,IR)。可使用export接口直接将模型保存为MindIR(当前仅支持严格图模式)。

[5]:
mindspore.set_context(mode=mindspore.GRAPH_MODE, jit_syntax_level=mindspore.STRICT)
model = network()
inputs = Tensor(np.ones([1, 1, 28, 28]).astype(np.float32))
mindspore.export(model, inputs, file_name="model", file_format="MINDIR")

MindIR同时保存了Checkpoint和模型结构,因此需要定义输入Tensor来获取输入shape。

已有的MindIR模型可以方便地通过load接口加载,传入nn.GraphCell即可进行推理。

nn.GraphCell仅支持图模式。

[6]:
graph = mindspore.load("model.mindir")
model = nn.GraphCell(graph)
outputs = model(inputs)
print(outputs.shape)
[6]:
(1, 10)