比较与torch.nn.Conv3d的差异

查看源文件

torch.nn.Conv3d

class torch.nn.Conv3d(
    in_channels,
    out_channels,
    kernel_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    bias=True,
    padding_mode='zeros'
)(input) -> Tensor

更多内容详见torch.nn.Conv3d

mindspore.nn.Conv3d

class mindspore.nn.Conv3d(
    in_channels,
    out_channels,
    kernel_size,
    stride=1,
    pad_mode='same',
    padding=0,
    dilation=1,
    group=1,
    has_bias=False,
    weight_init=None,
    bias_init=None,
    data_format='NCDHW'
)(x) -> Tensor

更多内容详见mindspore.nn.Conv3d

差异对比

PyTorch:对输入Tensor计算三维卷积,通常情况下,输入大小为\(\left(N, C_{i n}, D, H, W\right)\)、输出大小为\(\left(N, C_{\text {out }}, D_{\text {out }}, H_{\text {out }}, W_{\text {out }}\right)\)的输出值可以描述为:

\[ \operatorname{out}\left(N_{i}, C_{\text {out }_{j}}\right)=\operatorname{bias}\left(C_{\text {out }_{j}}\right)+\sum_{k=0}^{C_{i n}-1} \text { weight }\left(C_{\text {out }_{j}}, k\right) \star \operatorname{input}\left(N_{i}, k\right) \]

其中,\(\star\)为3d cross-correlation 算子,\(N\)是batch size,\(C\)是通道数量,\(D\)\(H\)\(W\)分别是特征层的深度、高度和宽度。

MindSpore:与PyTorch实现的功能基本一致,但存在偏置差异和填充差异。

  1. 偏置差异:MindSpore默认不添加偏置参数,与PyTorch相反。

  2. 填充差异:MindSpore默认对输入进行填充,而PyTorch则默认不填充。同时MindSpore填充模式可选项和行为与PyTorch不同,填充行为具体差异如下。

填充行为差异

  1. PyTorch的参数padding_mode可选项有‘zeros’、‘reflect’、‘replicate’、‘circular,默认为‘zeros’,参数padding可选项有int、tuple of ints、‘valid’、‘same’,默认为0,参数padding_mode与torch.nn.functional.pad接口的四种填充模式一致,设置过后会对卷积的输入按照指定模式的填充方式进行填充,如下:

    • zero:常量填充(默认零填充)。

    • reflect:反射填充。

    • replicate:边缘复制填充。

    • circular:循环填充。

    由padding_mode决定填充方式后,padding参数则用于控制填充的数量与位置。针对Conv2d,padding指定为int的时候,会在输入的前后上下左右进行padding次的填充(若为默认值0则代表不进行填充);padding指定为tuple的时候,会按照tuple的输入在前后上下左右进行指定次数的填充;padding设置为‘valid’模式时,不进行填充,只会在不超出特征图的范围内进行卷积;padding设置为‘same’ 模式时,若需要padding的元素个数为偶数个,padding的元素则会均匀的分布在特征图的上下左右,若需要padding的元素个数为奇数个,PyTorch则会优先填充特征图的左侧和上侧。

  2. MindSpore的参数pad_mode可选项有‘same’、‘valid’、‘pad’,参数padding只能输入int,填充参数的详细意义如下:

    pad_mode设置为‘pad’的时候,MindSpore可以设置padding参数为大于等于0的正整数,会在输入的前后上下左右进行padding次的0填充(若为默认值0则代表不进行填充);pad_mode为另外两种模式时,padding参数必须只能设置为0,pad_mode设置为‘valid’模式时,不进行填充,只会在不超出特征图的范围内进行卷积;pad_mode设置为‘same’模式时,若需要padding的元素个数为偶数个,padding的元素则会均匀的分布在特征图的上下左右,若需要padding的元素个数为奇数个,MindSpore则会优先填充特征图的右侧和下侧(与PyTorch不同,类似TensorFlow)。

    因此MindSpore若想实现与PyTorch一致的填充模式,需要先手动使用nn.Pad或者ops.pad接口对输入进行手动填充。

权重初始化差异

mindspore.nn.Conv3d的 weight_initNone 时,权重使用HeUniform初始化。此时和PyTorch权重初始化方式一致。

mindspore.nn.Conv3d的 bias_initNone 时,偏差使用Uniform初始化。此时和PyTorch偏差初始化方式一致。

分类

子类

PyTorch

MindSpore

差异

参数

参数1

in_channels

in_channels

-

参数2

out_channels

out_channels

-

参数3

kernel_size

kernel_size

-

参数4

stride

stride

-

参数5

padding

padding

-

参数6

dilation

dilation

-

参数7

groups

group

功能一致,参数名不同

参数8

bias

has_bias

功能一致,参数名不同,默认值不同

参数9

padding_mode

pad_mode

具体差异参考上文

参数10

-

weight_init

权重参数的初始化方法,具体差异参考上文

参数11

-

bias_init

偏置参数的初始化方法,具体差异参考上文

参数12

-

data_format

输入数据格式,PyTorch无此参数

输入

单输入

input

x

功能一致,参数名不同

代码示例1

PyTorch的参数bias默认值为True,即默认添加偏置参数,而MindSpore的参数has_bias默认值为False,即默认不添加偏置函数,如果需要添加偏置参数,需要将has_bias的值设置为True。

# PyTorch
import torch
from torch import tensor
import numpy as np

x_ = np.ones((16, 3, 10, 32, 32))
x = tensor(x_, dtype=torch.float32)
net = torch.nn.Conv3d(3, 32, (4, 3, 3))
output = net(x).detach().numpy().shape
print(output)
# (16, 32, 7, 30, 30)

# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np

x_ = np.ones((16, 3, 10, 32, 32))
x = Tensor(x_, mindspore.float32)
net = nn.Conv3d(3, 32, (4, 3, 3), has_bias=True, pad_mode='valid')
output = net(x).shape
print(output)
# (16, 32, 7, 30, 30)

代码示例2

PyTorch的参数padding_mode为'zero'时,表示对输入进行零填充,而MindSpore中实现零填充需设置参数pad_mode为'pad'。

# PyTorch
import torch
from torch import tensor
import numpy as np

x_ = np.ones((16, 3, 10, 32, 32))
x = tensor(x_, dtype=torch.float32)
net = torch.nn.Conv3d(3, 32, (4, 3, 3), padding=1, padding_mode='zeros')
output = net(x).detach().numpy().shape
print(output)
# (16, 32, 9, 32, 32)

# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np

x_ = np.ones((16, 3, 10, 32, 32))
x = Tensor(x_, mindspore.float32)
net = nn.Conv3d(3, 32, (4, 3, 3), padding=1, pad_mode='pad')
output = net(x).shape
print(output)
# (16, 32, 9, 32, 32)

代码示例3

PyTorch默认情况下不对输入进行填充,而MindSpore默认情况下需要对输入进行填充,如果不对输入进行填充,需要将pad_mode设置为'valid'。

# PyTorch
import torch
from torch import tensor
import numpy as np

x_ = np.ones((16, 3, 10, 32, 32))
x = tensor(x_, dtype=torch.float32)
net = torch.nn.Conv3d(3, 32, (4, 3, 3))
output = net(x).detach().numpy().shape
print(output)
# (16, 32, 7, 30, 30)

# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np

x_ = np.ones((16, 3, 10, 32, 32))
x = Tensor(x_, mindspore.float32)
net = nn.Conv3d(3, 32, (4, 3, 3), pad_mode='valid')
output = net(x).shape
print(output)
# (16, 32, 7, 30, 30)