文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.MaxPool3D

查看源文件
class mindspore.ops.MaxPool3D(kernel_size=1, strides=1, pad_mode='VALID', pad_list=0, ceil_mode=None, data_format='NCDHW')[源代码]

对输入的多维数据进行三维的最大池化运算。

一般,输入shape为 (Nin,Cin,Din,Hin,Win) 的Tensor,输出 (Din,Hin,Win) 维上的区域最大值。给定 kernel_sizeks=(dker,hker,wker) 和 stride 为 s=(s0,s1,s2),运算如下:

output(Ni,Cj,d,h,w)=maxl=0,,dker1maxm=0,,hker1maxn=0,,wker1input(Ni,Cj,s0×d+l,s1×h+m,s2×w+n)
参数:
  • kernel_size (Union[int, tuple[int]]) - 指定池化核尺寸大小。整数类型,表示池化核深度、高和宽,或者是三个整数组成的元组,表示深、高和宽。默认值: 1

  • strides (Union[int, tuple[int]]) - 池化操作的移动步长,整数类型,表示深、高和宽的移动步长,或者是三个整数组成的元组,表示深、高和宽移动步长。默认值: 1

  • pad_mode (str,可选) - 指定填充模式,填充值为0。可选值为 "SAME""VALID""PAD" 。默认值: "VALID"

    • "SAME":在输入的深度、高度和宽度维度进行填充,使得当 stride1 时,输入和输出的shape一致。待填充的量由算子内部计算,若为偶数,则均匀地填充在四周,若为奇数,多余的填充量将补充在前方/底部/右侧。如果设置了此模式, pad_list 必须为0。

    • "VALID":不对输入进行填充,返回输出可能的最大深度、高度和宽度,不能构成一个完整stride的额外的像素将被丢弃。如果设置了此模式, pad_list 必须为0。

    • "PAD":对输入填充指定的量。在这种模式下,在输入的深度、高度和宽度方向上填充的量由 pad_list 参数指定。如果设置此模式, pad_list 必须大于或等于0。

  • pad_list (Union(int, tuple[int])) - 池化填充方式。默认值: 0 。如果 pad 是一个整数,则头尾部、顶部,底部,左边和右边的填充都是相同的,等于 pad 。如果 pad 是六个整数的tuple,则头尾部、顶部、底部、左边和右边的填充分别等于填充pad[0]、pad[1]、pad[2]、pad[3]、pad[4]和pad[5]。

  • ceil_mode (Union[bool, None]) - 是否使用ceil函数计算输出高度和宽度。默认值: None

  • data_format (str) - 输入和输出的数据格式。目前仅支持 "NCDHW" 。默认值: "NCDHW"

输入:
  • x (Tensor) - shape为 (N,C,Din,Hin,Win) 的Tensor。数据类型为float16或float32。

输出:

Tensor,shape为 (N,C,Dout,Hout,Wout) 。数据类型与 x 相同。

异常:
  • TypeError - kernel_sizestrides 既不是int也不是元组。

  • TypeError - pad_modedata_format 不是str。

  • ValueError - kernel_sizestrides 不是正数。

  • ValueError - pad_mode 不是 "SAME""VALID" 、或 "PAD"

  • ValueError - pad_mode 取值为 "SAME""VALID"ceil_mode 取值不是 None

  • ValueError - kernel_sizestrides 是长度不等于3的元组。

  • ValueError - data_format 不是 "NCDHW"

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> x = Tensor(np.arange(1 * 2 * 2 * 2 * 3).reshape((1, 2, 2, 2, 3)), mindspore.float32)
>>> max_pool3d = ops.MaxPool3D(kernel_size=2, strides=1, pad_mode="VALID")
>>> output = max_pool3d(x)
>>> print(output)
[[[[[10. 11.]]]
  [[[22. 23.]]]]]