文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.approximate_equal

mindspore.ops.approximate_equal(x, y, tolerance=1e-05)[源代码]

逐元素计算abs(x-y),如果小于tolerance则为 True ,否则为 False

outi={ if |xiyi|<tolerance,  True if |xiyi|tolerance,  False

tolerance 为相等的两元素间最大偏差。 输入 xy 会通过隐式数据类型转换使数据类型保持一致。如果数据类型不同,低精度的数据类型会被自动转换到高精度的数据类型。

参数:
  • x (Tensor) - 输入Tensor,需为以下数据类型:float16,float32。shape: (N,) ,其中 表示任何数量的附加维度。

  • y (Tensor) - 输入Tensor,shape与数据类型与 x 相同。

  • tolerance (float) - 两元素可被视为相等的最大偏差。默认值: 1e-5

返回:

Tensor,shape与 x 相同,bool类型。

异常:
  • TypeError - tolerance 不是float类型。

  • RuntimeError - xy 之间的类型转换不被支持。

支持平台:

Ascend GPU CPU

样例:

>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> from mindspore import dtype as mstype
>>> tol = 1.5
>>> x = Tensor(np.array([1, 2, 3]), mstype.float32)
>>> y = Tensor(np.array([2, 4, 6]), mstype.float32)
>>> output = ops.approximate_equal(Tensor(x), Tensor(y), tol)
>>> print(output)
[ True  False  False]