文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

问题描述

请勾选同意隐私声明

mindspore.ops.AllReduce

class mindspore.ops.AllReduce(op=ReduceOp.SUM, group=GlobalComm.WORLD_COMM_GROUP)[源代码]

使用指定方式对通信组内的所有设备的Tensor数据进行规约操作,所有设备都得到相同的结果。

说明

集合中的所有进程的Tensor必须具有相同的shape和格式。

参数:
  • op (str) - 规约的具体操作,如 "sum""prod""max" 、和 "min" 。默认值: ReduceOp.SUM

  • group (str) - 工作的通信组。默认值:GlobalComm.WORLD_COMM_GROUP (即Ascend平台为 "hccl_world_group" ,GPU平台为 "nccl_world_group" )。

输入:
  • input_x (Tensor) - shape为 (x1,x2,...,xR) 的Tensor。

输出:

Tensor,shape与输入相同,即 (x1,x2,...,xR) 。其内容取决于操作。

异常:
  • TypeError - opgroup 不是str,或者输入的数据类型是bool。

支持平台:

Ascend GPU CPU

样例:

说明

运行以下样例之前,需要配置好通信环境变量。

针对Ascend设备,用户需要准备rank表,设置rank_id和device_id,详见 rank table启动

针对GPU设备,用户需要准备host文件和mpi,详见 mpirun启动

针对CPU设备,用户需要编写动态组网启动脚本,详见 动态组网启动

该样例需要在2卡环境下运行。

>>> import numpy as np
>>> from mindspore.communication import init
>>> from mindspore import Tensor
>>> from mindspore.ops import ReduceOp
>>> import mindspore.nn as nn
>>> import mindspore.ops as ops
>>>
>>> init()
>>> class Net(nn.Cell):
...     def __init__(self):
...         super(Net, self).__init__()
...         self.allreduce_sum = ops.AllReduce(ReduceOp.SUM)
...
...     def construct(self, x):
...         return self.allreduce_sum(x)
...
>>> input_ = Tensor(np.ones([2, 8]).astype(np.float32))
>>> net = Net()
>>> output = net(input_)
>>> print(output)
[[2. 2. 2. 2. 2. 2. 2. 2.]
[2. 2. 2. 2. 2. 2. 2. 2.]]
教程样例: