mindspore.experimental.optim.NAdam

class mindspore.experimental.optim.NAdam(params, lr=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.0, momentum_decay=0.004)[源代码]

NAdam算法的实现。

警告

这是一个实验性的优化器接口,需要和 LRScheduler 下的动态学习率接口配合使用。

参数:
  • params (Union[list(Parameter), list(dict)]) - 网络参数的列表或指定了参数组的列表。

  • lr (Union[int, float, Tensor], 可选) - 学习率。默认值:2e-3

  • betas (Tuple[float, float], 可选) - 梯度及其平方的运行平均值的系数。默认值:(0.9, 0.999)

  • eps (float, 可选) - 加在分母上的值,以确保数值稳定。必须大于0。默认值:1e-8

  • weight_decay (float, 可选) - 权重衰减(L2 penalty)。默认值:0.

  • momentum_decay (float, 可选) - 动量衰减系数。默认值:4e-3

输入:
  • gradients (tuple[Tensor]) - 网络权重的梯度。

异常:
  • ValueError - 学习率不是int、float或Tensor。

  • ValueError - 学习率小于0。

  • ValueError - eps 小于0。

  • ValueError - weight_decay 小于0。

  • ValueError - momentum_decay 小于0。

  • ValueError - betas 内元素取值范围不在[0, 1)之间。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> from mindspore import nn
>>> from mindspore.experimental import optim
>>> # Define the network structure of LeNet5. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.3.0rc2/docs/mindspore/code/lenet.py
>>> net = LeNet5()
>>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> optimizer = optim.NAdam(net.trainable_params(), lr=0.1)
>>> def forward_fn(data, label):
...     logits = net(data)
...     loss = loss_fn(logits, label)
...     return loss, logits
>>> grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
>>> def train_step(data, label):
...     (loss, _), grads = grad_fn(data, label)
...     optimizer(grads)
...     return loss