mindspore.experimental.optim.Adamax
- class mindspore.experimental.optim.Adamax(params, lr=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.0, *, maximize=False)[源代码]
Adamax算法的实现(基于无穷范数的Adam算法)。
更新公式如下:
\[\begin{split}\begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{ (lr)}, \beta_1, \beta_2 \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)}, \: \lambda \text{ (weight decay)}, \\ &\hspace{13mm} \epsilon \text{ (epsilon)} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, u_0 \leftarrow 0 \text{ ( infinity norm)} \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}if \: \lambda \neq 0 \\ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ &\hspace{5mm}u_t \leftarrow \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon) \\ &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned}\end{split}\]警告
这是一个实验性的优化器接口,需要和 LRScheduler 下的动态学习率接口配合使用。
- 参数:
params (Union[list(Parameter), list(dict)]) - 网络参数的列表或指定了参数组的列表。
lr (Union[int, float, Tensor], 可选) - 学习率。默认值:
2e-3
。betas (Tuple[float, float], 可选) - 梯度及其平方的运行平均值的系数。默认值:
(0.9, 0.999)
。eps (float, 可选) - 加在分母上的值,以确保数值稳定。必须大于0。默认值:
1e-8
。weight_decay (float, 可选) - 权重衰减(L2 penalty)。默认值:
0.
。
- 关键字参数:
maximize (bool, 可选) - 是否根据目标函数最大化网络参数。默认值:
False
。
- 输入:
gradients (tuple[Tensor]) - 网络权重的梯度。
- 异常:
ValueError - 学习率不是int、float或Tensor。
ValueError - 学习率小于0。
ValueError - eps 小于0。
ValueError - betas 范围不在[0,1)之间。
ValueError - weight_decay 小于0。
- 支持平台:
Ascend
GPU
CPU
样例:
>>> import mindspore >>> from mindspore import nn >>> from mindspore.experimental import optim >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/r2.3.0rc2/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True) >>> optimizer = optim.Adamax(net.trainable_params(), lr=0.1) >>> def forward_fn(data, label): ... logits = net(data) ... loss = loss_fn(logits, label) ... return loss, logits >>> grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True) >>> def train_step(data, label): ... (loss, _), grads = grad_fn(data, label) ... optimizer(grads) ... return loss