文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

问题描述

请勾选同意隐私声明

mindspore.ops.gather

查看源文件
mindspore.ops.gather(input_params, input_indices, axis, batch_dims=0)[源代码]

返回输入Tensor在指定 axisinput_indices 索引对应的元素组成的切片。

下图展示了Gather常用的计算过程:

../../_images/Gather.png

其中,params代表输入 input_params ,indices代表要切片的索引 input_indices

说明

  1. input_indices的值必须在 [0, input_params.shape[axis]) 范围内。CPU与GPU平台越界访问将会抛出异常,Ascend平台越界访问的返回结果是未定义的。

  2. Ascend平台上,input_params的数据类型当前不能是 bool_

参数:
  • input_params (Tensor) - 原始Tensor,shape为 (x1,x2,...,xR)

  • input_indices (Tensor) - 要切片的索引Tensor,shape为 (y1,y2,...,yS) 。指定原始Tensor中要切片的索引。数据类型必须是int32或int64。

  • axis (Union(int, Tensor[int])) - 指定要切片的维度索引。它必须要大于或等于 batch_dims。若 axis 为Tensor,其size必须为1。

  • batch_dims (int) - 指定batch维的数量。它必须要小于或等于 input_indices 的rank。默认值: 0

返回:

Tensor,shape为 input_params.shape[:axis]+input_indices.shape[batch_dims:]+input_params.shape[axis+1:]

异常:
  • TypeError - axis 不是int或Tensor。

  • ValueError - axis 为Tensor时,size不为1。

  • TypeError - input_params 不是Tensor。

  • TypeError - input_indices 不是int类型的Tensor。

  • RuntimeError - input_indices 在CPU或GPU平台超出 [0, input_params.shape[axis]) 范围。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> # case1: input_indices is a Tensor with shape (5, ).
>>> input_params = Tensor(np.array([1, 2, 3, 4, 5, 6, 7]), mindspore.float32)
>>> input_indices = Tensor(np.array([0, 2, 4, 2, 6]), mindspore.int32)
>>> axis = 0
>>> output = ops.gather(input_params, input_indices, axis)
>>> print(output)
[1. 3. 5. 3. 7.]
>>> # case2: input_indices is a Tensor with shape (2, 2). When the input_params has one dimension,
>>> # the output shape is equal to the input_indices shape.
>>> input_indices = Tensor(np.array([[0, 2], [2, 6]]), mindspore.int32)
>>> axis = 0
>>> output = ops.gather(input_params, input_indices, axis)
>>> print(output)
[[1. 3.]
 [3. 7.]]
>>> # case3: input_indices is a Tensor with shape (2, ) and
>>> # input_params is a Tensor with shape (3, 4) and axis is 0.
>>> input_params = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), mindspore.float32)
>>> input_indices = Tensor(np.array([0, 2]), mindspore.int32)
>>> axis = 0
>>> output = ops.gather(input_params, input_indices, axis)
>>> print(output)
[[ 1.  2.  3.  4.]
 [ 9. 10. 11. 12.]]
>>> # case4: input_indices is a Tensor with shape (2, ) and
>>> # input_params is a Tensor with shape (3, 4) and axis is 1, batch_dims is 1.
>>> input_params = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), mindspore.float32)
>>> input_indices = Tensor(np.array([0, 2, 1]), mindspore.int32)
>>> axis = 1
>>> batch_dims = 1
>>> output = ops.gather(input_params, input_indices, axis, batch_dims)
>>> print(output)
[ 1.  7. 10.]