mindspore.dataset.vision.FiveCrop

查看源文件
class mindspore.dataset.vision.FiveCrop(size)[源代码]

在输入PIL图像的中心与四个角处分别裁剪指定尺寸大小的子图。

参数:
  • size (Union[int, Sequence[int, int]]) - 裁剪子图的尺寸大小。若输入int,则以该值为边长裁剪( size , size )尺寸大小的子图;若输入Sequence[int, int],则以2个元素分别为高和宽裁剪子图。

异常:
  • TypeError - 当 size 的类型不为int或Sequence[int, int]。

  • ValueError - 当 size 不为正数。

支持平台:

CPU

样例:

>>> import os
>>> import numpy as np
>>> from PIL import Image, ImageDraw
>>> import mindspore.dataset as ds
>>> import mindspore.dataset.vision as vision
>>> from mindspore.dataset.transforms import Compose
>>>
>>> # Use the transform in dataset pipeline mode
>>> class MyDataset:
...     def __init__(self):
...         self.data = []
...         img = Image.new("RGB", (300, 300), (255, 255, 255))
...         draw = ImageDraw.Draw(img)
...         draw.ellipse(((0, 0), (100, 100)), fill=(255, 0, 0), outline=(255, 0, 0), width=5)
...         img.save("./1.jpg")
...         data = np.fromfile("./1.jpg", np.uint8)
...         self.data.append(data)
...
...     def __getitem__(self, index):
...         return self.data[0]
...
...     def __len__(self):
...         return 5
>>>
>>> my_dataset = MyDataset()
>>> generator_dataset = ds.GeneratorDataset(my_dataset, column_names="image")
>>> transforms_list = Compose([vision.Decode(to_pil=True),
...                            vision.FiveCrop(size=200),
...                            # 4D stack of 5 images
...                            lambda *images: np.stack([vision.ToTensor()(image) for image in images])])
>>> # apply the transform to dataset through map function
>>> generator_dataset = generator_dataset.map(operations=transforms_list, input_columns="image")
>>> for item in generator_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
...     print(item["image"].shape, item["image"].dtype)
...     break
(5, 3, 200, 200) float32
>>> os.remove("./1.jpg")
>>>
>>> # Use the transform in eager mode
>>> img = Image.new("RGB", (300, 300), (255, 255, 255))
>>> draw = ImageDraw.Draw(img)
>>> draw.polygon([(50, 50), (150, 50), (100, 150)], fill=(0, 255, 0), outline=(0, 255, 0))
>>> img.save("./2.jpg")
>>> data = Image.open("./2.jpg")
>>> output = vision.FiveCrop(size=20)(data)
>>> print(np.array(output).shape, np.array(output).dtype)
(5,) object
>>> os.remove("./2.jpg")
教程样例: