mindspore.dataset.YelpReviewDataset

查看源文件
class mindspore.dataset.YelpReviewDataset(dataset_dir, usage=None, num_samples=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, num_parallel_workers=None, cache=None)[源代码]

Yelp Review Full和Yelp Review Polarity数据集。

生成的数据集有两列 [label, text],两列的数据类型均为string。

参数:
  • dataset_dir (str) - 包含数据集文件的根目录路径。

  • usage (str, 可选) - 指定数据集的子集,可取值为 'train''test''all' 。默认值: None ,读取全部样本。 对于Polarity数据集, 'train' 将读取560,000个训练样本, 'test' 将读取38,000个测试样本, 'all' 将读取所有598,000个样本。 对于Full数据集, 'train' 将读取650,000个训练样本, 'test' 将读取50,000个测试样本, 'all' 将读取所有700,000个样本。默认值: None ,读取所有样本。

  • num_samples (int, 可选) - 指定从数据集中读取的样本数。默认值: None ,读取全部样本。

  • shuffle (Union[bool, Shuffle], 可选) - 每个epoch中数据混洗的模式,支持传入bool类型与枚举类型进行指定。默认值: Shuffle.GLOBAL 。 如果 shuffleFalse ,则不混洗,如果 shuffleTrue ,等同于将 shuffle 设置为 mindspore.dataset.Shuffle.GLOBAL 。 通过传入枚举变量设置数据混洗的模式:

    • Shuffle.GLOBAL :混洗文件和样本。

    • Shuffle.FILES :仅混洗文件。

  • num_shards (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值: None 。指定此参数后, num_samples 表示每个分片的最大样本数。

  • shard_id (int, 可选) - 指定分布式训练时使用的分片ID号。默认值: None 。只有当指定了 num_shards 时才能指定此参数。

  • num_parallel_workers (int, 可选) - 指定读取数据的工作线程数。默认值: None ,使用全局默认线程数(8),也可以通过 mindspore.dataset.config.set_num_parallel_workers() 配置全局线程数。

  • cache (DatasetCache, 可选) - 单节点数据缓存服务,用于加快数据集处理,详情请阅读 单节点数据缓存 。默认值: None ,不使用缓存。

异常:
  • RuntimeError - dataset_dir 参数所指向的文件目录不存在或缺少数据集文件。

  • RuntimeError - 指定了 num_shards 参数,但是未指定 shard_id 参数。

  • RuntimeError - 指定了 shard_id 参数,但是未指定 num_shards 参数。

  • ValueError - num_parallel_workers 参数超过系统最大线程数。

样例:

>>> import mindspore.dataset as ds
>>> yelp_review_dataset_dir = "/path/to/yelp_review_dataset_dir"
>>> dataset = ds.YelpReviewDataset(dataset_dir=yelp_review_dataset_dir, usage='all')
教程样例:

关于YelpReview数据集:

Yelp Review Full数据集包括来自Yelp的评论数据。这些数据时从2015年的Yelp数据集挑战赛数据中提取的,主要用于文本分类。

Yelp Review Polarity数据集在Full数据集的基础上,对产品评分进行了分级,评论分数1和2视为负面评论,4和5视为正面评论。

Yelp Reviews Polarity和Yelp Reviews Full datasets具有相同的目录结构。 可以将数据集文件解压缩到以下结构,并通过MindSpore的API读取:

.
└── yelp_review_dir
     ├── train.csv
     ├── test.csv
     └── readme.txt

引用:

@article{zhangCharacterlevelConvolutionalNetworks2015,
  archivePrefix = {arXiv},
  eprinttype = {arxiv},
  eprint = {1509.01626},
  primaryClass = {cs},
  title = {Character-Level {{Convolutional Networks}} for {{Text Classification}}},
  abstract = {This article offers an empirical exploration on the use of character-level convolutional networks
              (ConvNets) for text classification. We constructed several large-scale datasets to show that
              character-level convolutional networks could achieve state-of-the-art or competitive results.
              Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF
              variants, and deep learning models such as word-based ConvNets and recurrent neural networks.},
  journal = {arXiv:1509.01626 [cs]},
  author = {Zhang, Xiang and Zhao, Junbo and LeCun, Yann},
  month = sep,
  year = {2015},
}
@article{zhangCharacterlevelConvolutionalNetworks2015,
  archivePrefix = {arXiv},
  eprinttype = {arxiv},
  eprint = {1509.01626},
  primaryClass = {cs},
  title = {Character-Level {{Convolutional Networks}} for {{Text Classification}}},
  abstract = {This article offers an empirical exploration on the use of character-level convolutional networks
              (ConvNets) for text classification. We constructed several large-scale datasets to show that
              character-level convolutional networks could achieve state-of-the-art or competitive results.
              Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF
              variants, and deep learning models such as word-based ConvNets and recurrent neural networks.},
  journal = {arXiv:1509.01626 [cs]},
  author = {Zhang, Xiang and Zhao, Junbo and LeCun, Yann},
  month = sep,
  year = {2015},
}

预处理操作

mindspore.dataset.Dataset.apply

对数据集对象执行给定操作函数。

mindspore.dataset.Dataset.concat

对传入的多个数据集对象进行拼接操作。

mindspore.dataset.Dataset.filter

通过自定义判断条件对数据集对象中的数据进行过滤。

mindspore.dataset.Dataset.flat_map

对数据集对象中每一条数据执行给定的数据处理,并将结果展平。

mindspore.dataset.Dataset.map

给定一组数据增强列表,按顺序将数据增强作用在数据集对象上。

mindspore.dataset.Dataset.project

从数据集对象中选择需要的列,并按给定的列名的顺序进行排序。

mindspore.dataset.Dataset.rename

对数据集对象按指定的列名进行重命名。

mindspore.dataset.Dataset.repeat

重复此数据集 count 次。

mindspore.dataset.Dataset.reset

重置下一个epoch的数据集对象。

mindspore.dataset.Dataset.save

将数据处理管道中正处理的数据保存为通用的数据集格式。

mindspore.dataset.Dataset.shuffle

通过创建 buffer_size 大小的缓存来混洗该数据集。

mindspore.dataset.Dataset.skip

跳过此数据集对象的前 count 条数据。

mindspore.dataset.Dataset.split

将数据集拆分为多个不重叠的子数据集。

mindspore.dataset.Dataset.take

截取数据集的前指定条数据。

mindspore.dataset.Dataset.zip

将多个dataset对象按列进行合并压缩,多个dataset对象不能有相同的列名。

Batch(批操作)

mindspore.dataset.Dataset.batch

将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 per_batch_map 指定组合前要进行的预处理操作。

mindspore.dataset.Dataset.bucket_batch_by_length

根据数据的长度进行分桶。

mindspore.dataset.Dataset.padded_batch

将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 pad_info 预先将样本补齐。

迭代器

mindspore.dataset.Dataset.create_dict_iterator

基于数据集对象创建迭代器。

mindspore.dataset.Dataset.create_tuple_iterator

基于数据集对象创建迭代器。

数据集属性

mindspore.dataset.Dataset.get_batch_size

获得数据集对象定义的批处理大小,即一个批处理数据中包含的数据条数。

mindspore.dataset.Dataset.get_class_indexing

获取类别名称到类别索引的映射字典。

mindspore.dataset.Dataset.get_col_names

返回数据集对象中包含的列名。

mindspore.dataset.Dataset.get_dataset_size

返回一个epoch中的batch数。

mindspore.dataset.Dataset.get_repeat_count

获取 RepeatDataset 中定义的repeat操作的次数。

mindspore.dataset.Dataset.input_indexs

获取/设置数据列索引,它表示使用下沉模式时数据列映射至网络中的对应关系。

mindspore.dataset.Dataset.num_classes

获取数据集对象中所有样本的类别数目。

mindspore.dataset.Dataset.output_shapes

获取数据集对象中每列数据的shape。

mindspore.dataset.Dataset.output_types

获取数据集对象中每列数据的数据类型。

应用采样方法

mindspore.dataset.MappableDataset.add_sampler

为当前数据集添加子采样器。

mindspore.dataset.MappableDataset.use_sampler

替换当前数据集的最末子采样器,保持父采样器不变。

其他方法

mindspore.dataset.Dataset.sync_update

释放阻塞条件并使用给定数据触发回调函数。

mindspore.dataset.Dataset.sync_wait

为同步操作在数据集对象上添加阻塞条件。

mindspore.dataset.Dataset.to_json

将数据处理管道序列化为JSON字符串,如果提供了文件名,则转储到文件中。