文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

问题描述

请勾选同意隐私声明

mindspore.numpy.correlate

mindspore.numpy.correlate(a, v, mode='valid')[源代码]

Cross-correlation of two 1-dimensional sequences.

This function computes the correlation as generally defined in signal processing texts:

cav[k]=sumna[n+k]conj(v[n])

with a and v sequences being zero-padded where necessary and conj being the conjugate.

说明

Currently, complex numbers are not supported.

参数
  • a (Union[list, tuple, Tensor]) – First input sequence.

  • v (Union[list, tuple, Tensor]) – Second input sequence.

  • mode (str, optional) – By default, mode is ‘valid’. If mode is ‘valid’, it returns output of length max(M,N)min(M,N)+1. The convolution product is only given for points where the signals overlap completely. Values outside the signal boundary have no effect. If mode is ‘full’, it returns the convolution at each point of overlap, with an output shape of (N+M1,). At the end-points of the convolution, the signals do not overlap completely, and boundary effects may be seen. If mode is ‘same’, it returns output of length max(M,N). Boundary effects are still visible.

返回

Tensor. Discrete cross-correlation of a and v.

异常
  • TypeError – If the inputs can not be converted to tensor.

  • ValueError – If a and v are empty or have wrong dimensions

Supported Platforms:

GPU

样例

>>> import mindspore.numpy as np
>>> output = np.correlate([1, 2, 3], [0, 1, 0.5])
>>> print(output)
[3.5]
>>> output = np.correlate([1, 2, 3], [0, 1, 0.5], mode="same")
>>> print(output)
[2.  3.5 3. ]
>>> output = np.correlate([1, 2, 3, 4, 5], [1, 2], mode="same")
>>> print(output)
[ 2.  5.  8. 11. 14.]