mindspore.export

查看源文件
mindspore.export(net, *inputs, file_name, file_format, **kwargs)[源代码]

将MindSpore网络模型导出为指定格式的文件。

说明

  • 当导出文件格式为AIR、ONNX时,单个Tensor的大小不能超过2GB。

  • file_name 没有后缀时,系统会根据 file_format 自动添加后缀。

  • 现已支持将 mindspore.jit() 修饰的函数导出成MINDIR格式文件。

  • 当导出 mindspore.jit() 修饰的函数时,函数内不能包含有类属性参与的计算。

  • AIR格式已弃用,将被删除。请使用其他格式或者MindSpore Lite进行离线推理。

参数:
  • net (Union[Cell, function]) - MindSpore网络结构。

  • inputs (Union[Tensor, Dataset, List, Tuple, Number, Bool]) - 网络的输入,如果网络有多个输入,需要一同传入。当传入的类型为 Dataset 时,将会把数据预处理行为同步保存起来。需要手动调整batch的大小,当前仅支持获取 Datasetimage 列。

  • file_name (str) - 导出模型的文件名称。

  • file_format (str) - MindSpore目前支持导出”AIR”,”ONNX”和”MINDIR”格式的模型。

    • AIR - Ascend Intermediate Representation。一种Ascend模型的中间表示格式。推荐的输出文件后缀是”.air”。

    • ONNX - Open Neural Network eXchange。一种针对机器学习所设计的开放式的文件格式。推荐的输出文件后缀是”.onnx”。

    • MINDIR - MindSpore Native Intermediate Representation for Anf。一种MindSpore模型的中间表示格式。推荐的输出文件后缀是”.mindir”。

  • kwargs (dict) - 配置选项字典。

    • enc_key (byte) - 用于加密的字节类型密钥,有效长度为16、24或者32。

    • enc_mode (Union[str, function]) - 指定加密模式,当设置 enc_key 时启用。

      • 对于 ‘AIR’和 ‘ONNX’格式的模型,当前仅支持自定义加密导出。

      • 对于 ‘MINDIR’格式的模型,支持的加密选项有: ‘AES-GCM’, ‘AES-CBC’, ‘SM4-CBC’和用户自定义加密算法。默认值:”AES-GCM”。

      • 关于使用自定义加密导出的详情,请查看 教程

    • dataset (Dataset) - 指定数据集的预处理方法,用于将数据集的预处理导入MindIR。

    • obf_config (dict) - 模型混淆配置选项字典。

      • type (str) - 混淆类型,目前支持动态混淆,即 ‘dynamic’ 。

      • obf_ratio (Union[str, float]) - 全模型算子的混淆比例,可取浮点数(0, 1]或者字符串 "small""medium""large""small""medium""large" 分别对应于 0.1、0.3、0.6。

      • customized_func (function) - 在自定义函数模式下需要设置的Python函数,用来控制混淆结构中的选择分支走向。它的返回值需要是bool类型,且是恒定的,用户可以参考不透明谓词进行设置(请查看 动态混淆教程 中的 my_func())。如果设置了 customized_func ,那么在使用 load 接口导入模型的时候,需要把这个函数也传入。

      • obf_random_seed (int) - 混淆随机种子,是一个取值范围为(0, 9223372036854775807]的整数,不同的随机种子会使模型混淆后的结构不同。如果用户设置了 obf_random_seed ,那么在部署混淆模型的时候,需要在调用 mindspore.nn.GraphCell 接口中传入 obf_random_seed 。需要注意的是,如果用户同时设置了 customized_funcobf_random_seed ,那么后一种模式将会被采用。

样例:

>>> import mindspore as ms
>>> import numpy as np
>>> from mindspore import Tensor
>>>
>>> # Define the network structure of LeNet5. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
>>> net = LeNet5()
>>> input_tensor = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32))
>>> ms.export(net, input_tensor, file_name='lenet', file_format='MINDIR')
教程样例: