mindspore.experimental.optim.Optimizer
- class mindspore.experimental.optim.Optimizer(params, defaults)[源代码]
用于参数更新的优化器基类。
警告
这是一个实验性的优化器模块,需要和 LRScheduler 下的动态学习率接口配合使用。
- 参数:
params (Union[list(Parameter), list(dict)]) - 网络参数的列表或指定了参数组的列表。
defaults (dict) - 一个包含了优化器参数默认值的字典(当参数组未指定参数值时使用此默认值)。
- 异常:
TypeError - learning_rate 不是int、float、Tensor。
TypeError - parameters 的元素不是Parameter或字典。
TypeError - weight_decay 不是float或int。
ValueError - weight_decay 小于0。
ValueError - learning_rate 是一个Tensor,但是其shape大于1。
- 支持平台:
Ascend
GPU
CPU
样例:
>>> import numpy as np >>> import mindspore >>> from mindspore import nn, Tensor, Parameter >>> from mindspore import ops >>> from mindspore.experimental import optim >>> >>> class MySGD(optim.Optimizer): ... def __init__(self, params, lr): ... defaults = dict(lr=lr) ... super(MySGD, self).__init__(params, defaults) ... ... def construct(self, gradients): ... for group_id, group in enumerate(self.param_groups): ... id = self.group_start_id[group_id] ... for i, param in enumerate(group["params"]): ... next_param = param + gradients[id+i] * group["lr"] ... ops.assign(param, next_param) >>> >>> net = nn.Dense(8, 2) >>> data = Tensor(np.random.rand(20, 8).astype(np.float32)) >>> label = Tensor(np.random.rand(20, 2).astype(np.float32)) >>> >>> optimizer = MySGD(net.trainable_params(), 0.01) >>> optimizer.add_param_group({"params": Parameter([0.01, 0.02])}) >>> >>> criterion = nn.MAELoss(reduction="mean") >>> >>> def forward_fn(data, label): ... logits = net(data) ... loss = criterion(logits, label) ... return loss, logits >>> >>> grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True) >>> >>> def train_step(data, label): ... (loss, _), grads = grad_fn(data, label) ... optimizer(grads) ... print(loss) >>> >>> train_step(data, label)