mindspore.dataset.PhotoTourDataset

查看源文件
class mindspore.dataset.PhotoTourDataset(dataset_dir, name, usage=None, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None)[源代码]

PhotoTour数据集。

根据给定的 usage 配置,生成数据集具有不同的输出列:

  • usage = ‘train’,输出列: [image, dtype=uint8]

  • usage ≠ ‘train’,输出列: [image1, dtype=uint8][image2, dtype=uint8][matches, dtype=uint32]

参数:
  • dataset_dir (str) - 包含数据集文件的根目录路径。

  • name (str) - 要加载的数据集内容名称,可以取值为 'notredame''yosemite''liberty''notredame_harris''yosemite_harris''liberty_harris'

  • usage (str, 可选) - 指定数据集的子集,可取值为 'train''test'。默认值: None ,将被设置为 'train' 。 取值为 'train' 时,每个 name 的数据集样本数分别为{‘notredame’: 468159, ‘yosemite’: 633587, ‘liberty’: 450092, ‘liberty_harris’: 379587, ‘yosemite_harris’: 450912, ‘notredame_harris’: 325295}。 取值为 'test' 时,将读取100,000个测试样本。

  • num_samples (int, 可选) - 指定从数据集中读取的样本数。默认值: None ,读取所有样本。

  • num_parallel_workers (int, 可选) - 指定读取数据的工作线程数。默认值: None ,使用全局默认线程数(8),也可以通过 mindspore.dataset.config.set_num_parallel_workers() 配置全局线程数。

  • shuffle (bool, 可选) - 是否混洗数据集。默认值: None 。下表中会展示不同参数配置的预期行为。

  • sampler (Sampler, 可选) - 指定从数据集中选取样本的采样器。默认值: None 。下表中会展示不同配置的预期行为。

  • num_shards (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值: None 。指定此参数后, num_samples 表示每个分片的最大样本数。

  • shard_id (int, 可选) - 指定分布式训练时使用的分片ID号。默认值: None 。只有当指定了 num_shards 时才能指定此参数。

  • cache (DatasetCache, 可选) - 单节点数据缓存服务,用于加快数据集处理,详情请阅读 单节点数据缓存 。默认值: None ,不使用缓存。

异常:
  • RuntimeError - dataset_dir 路径下不包含数据文件。

  • RuntimeError - 同时指定了 samplershuffle 参数。

  • RuntimeError - 同时指定了 samplernum_shards 参数或同时指定了 samplershard_id 参数。

  • RuntimeError - 指定了 num_shards 参数,但是未指定 shard_id 参数。

  • RuntimeError - 指定了 shard_id 参数,但是未指定 num_shards 参数。

  • ValueError - dataset_dir 不存在。

  • ValueError - usage 不是 'train''test'

  • ValueError - name 不是 ''notredame''yosemite''liberty''notredame_harris''yosemite_harris''liberty_harris'

  • ValueError - num_parallel_workers 参数超过系统最大线程数。

  • ValueError - 如果 shard_id 取值不在[0, num_shards )范围。

样例:

>>> import mindspore.dataset as ds
>>> # Read 3 samples from PhotoTour dataset.
>>> dataset = ds.PhotoTourDataset(dataset_dir="/path/to/photo_tour_dataset_directory",
...                               name='liberty', usage='train', num_samples=3)
教程样例:

说明

入参 num_samplesshufflenum_shardsshard_id 可用于控制数据集所使用的采样器,其与入参 sampler 搭配使用的效果如下。

参数 samplernum_samplesshufflenum_shardsshard_id 的不同组合得到的采样器

参数 sampler

参数 num_shards / shard_id

参数 shuffle

参数 num_samples

使用的采样器

mindspore.dataset.Sampler 类型

None

None

None

sampler

numpy.ndarray,list,tuple,int 类型

/

/

num_samples

SubsetSampler(indices = sampler , num_samples = num_samples )

iterable 类型

/

/

num_samples

IterSampler(sampler = sampler , num_samples = num_samples )

None

num_shards / shard_id

None / True

num_samples

DistributedSampler(num_shards = num_shards , shard_id = shard_id , shuffle = True , num_samples = num_samples )

None

num_shards / shard_id

False

num_samples

DistributedSampler(num_shards = num_shards , shard_id = shard_id , shuffle = False , num_samples = num_samples )

None

None

None / True

None

RandomSampler(num_samples = num_samples )

None

None

None / True

num_samples

RandomSampler(replacement = True , num_samples = num_samples )

None

None

False

num_samples

SequentialSampler(num_samples = num_samples )

关于PhotoTour数据集:

数据取自许愿池(罗马)、巴黎圣母院(巴黎)和半圆顶(美国约塞米蒂国家公园)的旅游圣地照片。 每个数据集包括一系列相应的图像块,是通过将旅游圣地的照片中的3D点投影回到原始图像而获得的。

数据集由1024 x 1024位图(.bmp)图像组成,每个图像都包含16 x 16的图像修补数组。 每个图像块都以64 x 64灰度采样,具有规范的比例和方向。有关如何确定比例和方向的详细信息,请参见论文。 关联的元数据文件info.txt包含匹配信息。info.txt的每一行对应一个单独的图像块,图像块在每个位图图像中从左到右、从上到下顺序排列。 info.txt每行上的第一个数字是采样该图像块的3D点ID——具有相同3D点ID的图像块从同一3D点投影(到不同的图像中)。 info.txt中的第二个数字代表图像块是从哪个原始图像采样得到,目前未使用。

可以将原始PhotoTour数据集文件解压缩到此目录结构中,并通过MindSpore的API读取。

.
└── photo_tour_dataset_directory
    ├── liberty/
    │    ├── info.txt                 // two columns: 3D_point_ID, unused
    │    ├── m50_100000_100000_0.txt  // seven columns: patch_ID1, 3D_point_ID1, unused1,
    │    │                            // patch_ID2, 3D_point_ID2, unused2, unused3
    │    ├── patches0000.bmp          // 1024*1024 pixels, with 16 * 16 patches.
    │    ├── patches0001.bmp
    │    ├── ...
    ├── yosemite/
    │    ├── ...
    ├── notredame/
    │    ├── ...
    ├── liberty_harris/
    │    ├── ...
    ├── yosemite_harris/
    │    ├── ...
    ├── notredame_harris/
    │    ├── ...

引用:

@INPROCEEDINGS{4269996,
    author={Winder, Simon A. J. and Brown, Matthew},
    booktitle={2007 IEEE Conference on Computer Vision and Pattern Recognition},
    title={Learning Local Image Descriptors},
    year={2007},
    volume={},
    number={},
    pages={1-8},
    doi={10.1109/CVPR.2007.382971}
}

预处理操作

mindspore.dataset.Dataset.apply

对数据集对象执行给定操作函数。

mindspore.dataset.Dataset.concat

对传入的多个数据集对象进行拼接操作。

mindspore.dataset.Dataset.filter

通过自定义判断条件对数据集对象中的数据进行过滤。

mindspore.dataset.Dataset.flat_map

对数据集对象中每一条数据执行给定的数据处理,并将结果展平。

mindspore.dataset.Dataset.map

给定一组数据增强列表,按顺序将数据增强作用在数据集对象上。

mindspore.dataset.Dataset.project

从数据集对象中选择需要的列,并按给定的列名的顺序进行排序。

mindspore.dataset.Dataset.rename

对数据集对象按指定的列名进行重命名。

mindspore.dataset.Dataset.repeat

重复此数据集 count 次。

mindspore.dataset.Dataset.reset

重置下一个epoch的数据集对象。

mindspore.dataset.Dataset.save

将数据处理管道中正处理的数据保存为通用的数据集格式。

mindspore.dataset.Dataset.shuffle

通过创建 buffer_size 大小的缓存来混洗该数据集。

mindspore.dataset.Dataset.skip

跳过此数据集对象的前 count 条数据。

mindspore.dataset.Dataset.split

将数据集拆分为多个不重叠的子数据集。

mindspore.dataset.Dataset.take

截取数据集的前指定条数据。

mindspore.dataset.Dataset.zip

将多个dataset对象按列进行合并压缩,多个dataset对象不能有相同的列名。

Batch(批操作)

mindspore.dataset.Dataset.batch

将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 per_batch_map 指定组合前要进行的预处理操作。

mindspore.dataset.Dataset.bucket_batch_by_length

根据数据的长度进行分桶。

mindspore.dataset.Dataset.padded_batch

将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 pad_info 预先将样本补齐。

迭代器

mindspore.dataset.Dataset.create_dict_iterator

基于数据集对象创建迭代器。

mindspore.dataset.Dataset.create_tuple_iterator

基于数据集对象创建迭代器。

数据集属性

mindspore.dataset.Dataset.get_batch_size

获得数据集对象定义的批处理大小,即一个批处理数据中包含的数据条数。

mindspore.dataset.Dataset.get_class_indexing

获取类别名称到类别索引的映射字典。

mindspore.dataset.Dataset.get_col_names

返回数据集对象中包含的列名。

mindspore.dataset.Dataset.get_dataset_size

返回一个epoch中的batch数。

mindspore.dataset.Dataset.get_repeat_count

获取 RepeatDataset 中定义的repeat操作的次数。

mindspore.dataset.Dataset.input_indexs

获取/设置数据列索引,它表示使用下沉模式时数据列映射至网络中的对应关系。

mindspore.dataset.Dataset.num_classes

获取数据集对象中所有样本的类别数目。

mindspore.dataset.Dataset.output_shapes

获取数据集对象中每列数据的shape。

mindspore.dataset.Dataset.output_types

获取数据集对象中每列数据的数据类型。

应用采样方法

mindspore.dataset.MappableDataset.add_sampler

为当前数据集添加子采样器。

mindspore.dataset.MappableDataset.use_sampler

替换当前数据集的最末子采样器,保持父采样器不变。

其他方法

mindspore.dataset.Dataset.device_que

将数据异步传输到Ascend/GPU设备上。

mindspore.dataset.Dataset.sync_update

释放阻塞条件并使用给定数据触发回调函数。

mindspore.dataset.Dataset.sync_wait

为同步操作在数据集对象上添加阻塞条件。

mindspore.dataset.Dataset.to_json

将数据处理管道序列化为JSON字符串,如果提供了文件名,则转储到文件中。