# Copyright 2020-2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Model."""
from __future__ import absolute_import
from collections.abc import Iterable
from functools import wraps
import os
import math
import copy
import importlib
import numpy as np
import mindspore
import mindspore.dataset as ds
from mindspore import log as logger
from mindspore.train.serialization import save_checkpoint, load_checkpoint
from mindspore.train.callback._checkpoint import ModelCheckpoint, _chg_ckpt_file_name_if_same_exist
from mindspore.common.tensor import Tensor
from mindspore.train.metrics import get_metrics, get_metric_fn
from mindspore._checkparam import check_input_data, check_output_data
from mindspore import _checkparam as Validator
from mindspore.train.callback import _InternalCallbackParam, RunContext, _CallbackManager, Callback, TimeMonitor
from mindspore.train.callback import __all__ as internal_cb_names
from mindspore import context
from mindspore.parallel._utils import _get_parallel_mode, _get_device_num, _get_parameter_broadcast, \
_device_number_check, _parameter_broadcast_check, _parallel_predict_check, \
_reset_op_id_with_offset
from mindspore.parallel._ps_context import _is_role_worker, _is_role_pserver, _is_ps_mode, \
_cache_enable, _enable_distributed_mindrt
from mindspore.train.metrics import Loss
from mindspore import nn
from mindspore.boost import AutoBoost
from mindspore.context import ParallelMode
from mindspore.parallel._recovery_context import _set_recovery_context, _get_recovery_context
from mindspore.train.dataset_helper import DatasetHelper, connect_network_with_dataset
from mindspore.common.api import _pynative_executor
from mindspore.dataset.core.config import get_debug_mode
from mindspore.dataset.engine.datasets import _set_training_dataset, _reset_training_dataset
from mindspore.train import amp
from mindspore._c_expression import _framework_profiler_step_start, _framework_profiler_step_end
def _transfer_tensor_to_tuple(inputs):
"""
If the input is a tensor, convert it to a tuple. If not, the output is unchanged.
"""
if isinstance(inputs, Tensor):
return (inputs,)
return inputs
class _StepSync(Callback):
@staticmethod
def step_end(run_context):
_pynative_executor.sync()
class _FrameworkProfilerCallback(Callback):
"""
Profiler callback of framework for training.
"""
def step_begin(self, run_context):
_framework_profiler_step_start()
def step_end(self, run_context):
_framework_profiler_step_end()
def _save_final_ckpt(func):
"""
Decorator function, which saves the current checkpoint when an exception occurs during training.
"""
@wraps(func)
def wrapper(self, *args, **kwargs):
obj = None
if kwargs.get('callbacks') and isinstance(kwargs.get('callbacks'), ModelCheckpoint):
obj = kwargs.get('callbacks')
if kwargs.get('callbacks') and isinstance(kwargs.get('callbacks'), list):
for item in kwargs.get('callbacks'):
if isinstance(item, ModelCheckpoint):
obj = item
if obj and obj._config and obj._config.exception_save:
try:
func(self, *args, **kwargs)
except BaseException as e:
# pylint: disable=W0212
prefix = _chg_ckpt_file_name_if_same_exist(obj._directory, obj._exception_prefix, True)
cur_ckpoint_file = prefix + "-" + str(self._current_epoch_num) + "_" \
+ str(self._current_step_num) + "_breakpoint.ckpt"
cur_file = os.path.join(obj._directory, cur_ckpoint_file)
if "epoch_num" in obj._append_dict:
obj._append_dict["epoch_num"] = obj._append_epoch_num + self._current_epoch_num
if "step_num" in obj._append_dict:
obj._append_dict["step_num"] = obj._append_step_num + self._current_step_num
save_checkpoint(self._train_network, cur_file, obj._config.integrated_save, obj._config.async_save,
obj._append_dict, obj._config.enc_key, obj._config.enc_mode)
raise e
else:
func(self, *args, **kwargs)
return wrapper
[文档]class Model:
"""
High-Level API for training or inference.
`Model` groups layers into an object with training and inference features based on the arguments.
Note:
- If use mixed precision functions, need to set parameter `optimizer` at the same time,
otherwise mixed precision functions do not take effect.
When uses mixed precision functions, `global_step` in optimizer may be different from `cur_step_num`
in Model.
- After using `custom_mixed_precision` or `auto_mixed_precision` for precision conversion, it is not supported
to perform the precision conversion again. If `Model` is used to train a converted network, `amp_level`
need to be configured to ``O0`` to avoid the duplicated accuracy conversion.
Args:
network (Cell): A training or testing network.
loss_fn (Cell): Objective function. If `loss_fn` is None, the `network` should contain the calculation of loss
and parallel if needed. Default: ``None`` .
optimizer (Cell): Optimizer for updating the weights. If `optimizer` is None, the `network` needs to
do backpropagation and update weights. Default: ``None`` .
metrics (Union[dict, set]): A Dictionary or a set of metrics for model evaluation.
eg: {'accuracy', 'recall'}. Default: ``None`` .
eval_network (Cell): Network for evaluation. If not defined, `network` and `loss_fn` would be wrapped as
`eval_network` . Default: ``None`` .
eval_indexes (list): It is used when eval_network is defined. If `eval_indexes` is None by default, all outputs
of the `eval_network` would be passed to metrics. If `eval_indexes` is set, it must contain
three elements: the positions of loss value, predicted value and label in outputs of the
`eval_network`. In this case, the loss value will be passed to the `Loss` metric, the
predicted value and label will be passed to other metrics.
:func:`mindspore.train.Metric.set_indexes` is recommended instead of `eval_indexes`.
Default: ``None`` .
amp_level (str): Option for argument `level` in :func:`mindspore.amp.build_train_network`, level for mixed
precision training. Supports ["O0", "O1", "O2", "O3", "auto"]. Default: ``"O0"`` .
- "O0": Do not change.
- "O1": Cast the operators in white_list to float16, the remaining operators are kept in float32.
The operators in the whitelist: [Conv1d, Conv2d, Conv3d, Conv1dTranspose, Conv2dTranspose,
Conv3dTranspose, Dense, LSTMCell, RNNCell, GRUCell, MatMul, BatchMatMul, PReLU, ReLU, Ger].
- "O2": Cast network to float16, keep BatchNorm run in float32, using dynamic loss scale.
- "O3": Cast network to float16, the BatchNorm is also cast to float16, loss scale will not be used.
- "auto": Set level to recommended level in different devices. Set level to "O2" on GPU, set
level to "O3" on Ascend. The recommended level is chosen by the expert experience, not applicable to all
scenarios. User should specify the level for special network.
"O2" is recommended on GPU, "O3" is recommended on Ascend.
The BatchNorm strategy can be changed by `keep_batchnorm_fp32` settings in `kwargs`. `keep_batchnorm_fp32`
must be a bool. The loss scale strategy can be changed by `loss_scale_manager` setting in `kwargs`.
`loss_scale_manager` should be a subclass of :class:`mindspore.amp.LossScaleManager`.
The more detailed explanation of `amp_level` setting can be found at `mindspore.amp.build_train_network`.
boost_level (str): Option for argument `level` in `mindspore.boost`, level for boost mode
training. Supports ["O0", "O1", "O2"]. Default: ``"O0"`` .
- "O0": Do not change.
- "O1": Enable the boost mode, the performance is improved by about 20%, and
the accuracy is the same as the original accuracy.
- "O2": Enable the boost mode, the performance is improved by about 30%, and
the accuracy is reduced by less than 3%.
If you want to config boost mode by yourself, you can set boost_config_dict as `boost.py`.
In order for this function to work, you need to set the optimizer, eval_network or metric parameters
at the same time.
Notice: The current optimization enabled by default only applies to some networks, and not all networks
can obtain the same benefits. It is recommended to enable this function on
the Graph mode + Ascend platform, and for better acceleration, refer to the documentation to configure
boost_config_dict.
Examples:
>>> from mindspore import nn
>>> from mindspore.train import Model
>>>
>>> # Define the network structure of LeNet5. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
>>> net = LeNet5()
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
>>> model.train_network
>>> model.predict_network
>>> model.eval_network
>>> # Create the dataset taking MNIST as an example. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/mnist.py
>>> dataset = create_dataset()
>>> model.train(2, dataset)
"""
def __init__(self, network, loss_fn=None, optimizer=None, metrics=None, eval_network=None, eval_indexes=None,
amp_level="O0", boost_level="O0", **kwargs):
self._network = network
self._loss_fn = loss_fn
self._optimizer = optimizer
self._loss_scale_manager = None
self._loss_scale_manager_set = False
self._keep_bn_fp32 = None
self._check_kwargs(kwargs)
self._amp_level = amp_level
self._boost_level = boost_level
self._eval_network = eval_network
self._process_amp_args(kwargs)
self._parallel_mode = _get_parallel_mode()
self._device_number = _get_device_num()
self._parameter_broadcast = _get_parameter_broadcast()
self._metrics = metrics
self._check_amp_level_arg(optimizer, amp_level)
self._check_for_graph_cell(kwargs)
self._build_boost_network(kwargs)
self._train_network = self._build_train_network()
self._train_network._jit_config_dict = network.jit_config_dict
self._build_eval_network(metrics, self._eval_network, eval_indexes)
self._build_predict_network()
self._current_epoch_num = 0
self._current_step_num = 0
self.epoch_iter = 0
self.enable_recovery = False
self._backbone_is_train = True
self.need_load_ckpt = False
self._lite_full_predictor = None
self._lite_incremental_predictor = None
self._mindspore_lite = None
self._lite_infer = True # if backend lite infer fails, set False
self._mindspore_lite_model_group_id = id(self) & 0xFFFF
def _check_for_graph_cell(self, kwargs):
"""Check for graph cell"""
if not isinstance(self._network, nn.GraphCell):
return
if self._amp_level != "O0":
logger.warning("amp_level will not work when network is a GraphCell.")
if self._loss_fn is not None or self._optimizer is not None:
raise ValueError("For 'Model', 'loss_fn' and 'optimizer' should be None when network is a GraphCell, "
"but got 'loss_fn': {}, 'optimizer': {}.".format(self._loss_fn, self._optimizer))
if kwargs:
raise ValueError("For 'Model', the '**kwargs' argument should be empty when network is a GraphCell.")
def _process_amp_args(self, kwargs):
if 'keep_batchnorm_fp32' in kwargs:
self._keep_bn_fp32 = kwargs['keep_batchnorm_fp32']
if 'loss_scale_manager' in kwargs:
self._loss_scale_manager = kwargs['loss_scale_manager']
self._loss_scale_manager_set = True
def _check_amp_level_arg(self, optimizer, amp_level):
"""Check amp level arg"""
if optimizer is None and amp_level != "O0":
raise ValueError(
"Auto mixed precision will not work because 'optimizer' is None.Please set amp_level='O0' "
"to disable auto mixed precision or set 'optimizer' not be None to use auto mixed precision.")
def _check_kwargs(self, kwargs):
for arg in kwargs:
if arg not in ['loss_scale_manager', 'keep_batchnorm_fp32', 'boost_config_dict', 'acc_level']:
raise ValueError(f"The argument in 'kwargs' should be 'loss_scale_manager' or "
f"'keep_batchnorm_fp32' or 'boost_config_dict' or 'acc_level', but got '{arg}'.")
def _check_reuse_dataset(self, dataset):
if not hasattr(dataset, '__model_hash__'):
dataset.__model_hash__ = hash(self)
if hasattr(dataset, '__model_hash__') and dataset.__model_hash__ != hash(self):
raise RuntimeError("The dataset object had been used in other model by model.train(...), "
"please create a new dataset.")
def _build_boost_network(self, kwargs):
"""Build the boost network."""
boost_config_dict = ""
if 'boost_config_dict' in kwargs:
boost_config_dict = kwargs['boost_config_dict']
if 'acc_level' in kwargs:
self._boost_level = kwargs['acc_level']
logger.warning("Next version acc_level will be removed, please replace with boost_level")
processor = AutoBoost(self._boost_level, boost_config_dict)
if processor.level not in ["O1", "O2"]:
return
if self._optimizer is None:
logger.warning("In boost mode, the optimizer must be defined.")
return
if self._eval_network is None and self._metrics is None:
logger.warning("In boost mode, the eval_network and metrics cannot be undefined at the same time.")
return
self._network, self._optimizer = processor.network_auto_process_train(self._network, self._optimizer)
if self._eval_network is not None:
self._eval_network = processor.network_auto_process_eval(self._eval_network)
def _build_train_network(self):
"""Build train network"""
network = self._network
Validator.check_value_type('network', network, nn.Cell)
if self._loss_scale_manager is not None and self._optimizer is None:
raise ValueError("The argument 'optimizer' can not be None when set 'loss_scale_manager'.")
net_inputs = network.get_inputs()
loss_inputs = [None]
if self._loss_fn:
if self._loss_fn.get_inputs():
loss_inputs = [*self._loss_fn.get_inputs()]
loss_inputs.pop(0)
if net_inputs:
net_inputs = [*net_inputs, *loss_inputs]
if self._optimizer:
amp_config = {}
if self._loss_scale_manager_set:
amp_config['loss_scale_manager'] = self._loss_scale_manager
if self._keep_bn_fp32 is not None:
amp_config['keep_batchnorm_fp32'] = self._keep_bn_fp32
network = amp.build_train_network(network,
self._optimizer,
self._loss_fn,
level=self._amp_level,
boost_level=self._boost_level,
**amp_config)
elif self._loss_fn:
network = nn.WithLossCell(network, self._loss_fn)
# If need to check if loss_fn is not None, but optimizer is None
if net_inputs is not None:
network.set_inputs(*net_inputs)
return network
def _build_eval_network(self, metrics, eval_network, eval_indexes):
"""Build the network for evaluation."""
self._metric_fns = get_metrics(metrics)
if not self._metric_fns:
return
if eval_network is not None:
if eval_indexes is not None and not (isinstance(eval_indexes, list) and len(eval_indexes) == 3):
raise ValueError("The argument 'eval_indexes' must be a list or None. If 'eval_indexes' is a list, "
"length of it must be three. But got 'eval_indexes' {}".format(eval_indexes))
self._eval_network = eval_network
self._eval_indexes = eval_indexes
else:
if self._loss_fn is None:
raise ValueError(f"If `metrics` is set, `eval_network` must not be None. Do not set `metrics` if you"
f" don't want an evaluation.\n"
f"If evaluation is required, you need to specify `eval_network`, which will be used in"
f" the framework to evaluate the model.\n"
f"For the simple scenarios with one data, one label and one logits, `eval_network` is"
f" optional, and then you can set `eval_network` or `loss_fn`. For the latter case,"
f" framework will automatically build an evaluation network with `network` and"
f" `loss_fn`.")
net_inputs = self._network.get_inputs()
loss_inputs = [None]
if self._loss_fn.get_inputs():
loss_inputs = [*self._loss_fn.get_inputs()]
loss_inputs.pop(0)
if net_inputs:
net_inputs = [*net_inputs, *loss_inputs]
self._eval_network = nn.WithEvalCell(self._network, self._loss_fn, self._amp_level in ["O2", "O3", "auto"])
if net_inputs is not None:
self._eval_network.set_inputs(*net_inputs)
self._eval_indexes = [0, 1, 2]
def _build_predict_network(self):
"""Build the network for prediction."""
self._predict_network = self._network
# Unlike the cases in build_train_network() and build_eval_network(), 'multi_subgraphs' is not set
def _clear_metrics(self):
"""Clear metrics local values."""
for metric in self._metric_fns.values():
metric.clear()
def _update_metrics(self, outputs):
"""Update metrics local values."""
if isinstance(outputs, Tensor):
outputs = (outputs,)
if not isinstance(outputs, tuple):
raise ValueError(f"The argument 'outputs' should be tuple, but got {type(outputs)}.")
if self._eval_indexes is not None and len(outputs) < 3:
raise ValueError("The length of 'outputs' must be >= 3, but got {}".format(len(outputs)))
for metric in self._metric_fns.values():
if self._eval_indexes is None:
metric.update(*outputs)
else:
if isinstance(metric, Loss):
metric.update(outputs[self._eval_indexes[0]])
else:
metric.update(outputs[self._eval_indexes[1]], outputs[self._eval_indexes[2]])
def _get_metrics(self):
"""Get metrics local values."""
metrics = dict()
# There's no need for server to execute eval, just give fake metrics.
for key, value in self._metric_fns.items():
if not _is_role_pserver():
metrics[key] = value.eval()
else:
metrics[key] = 1
return metrics
def _get_scaling_sens(self):
"""get the scaling sens"""
scaling_sens = 1
if self._loss_scale_manager is not None:
scaling_sens = self._loss_scale_manager.get_loss_scale()
if self._parallel_mode == ParallelMode.DATA_PARALLEL:
scaling_sens /= self._device_number
return scaling_sens
def _exec_preprocess(self, is_train, dataset, dataset_sink_mode, sink_size=-1, epoch_num=1, dataset_helper=None):
"""Initializes dataset."""
if is_train:
network = self._train_network
phase = 'train'
else:
network = self._eval_network
phase = 'eval'
if dataset_sink_mode and not is_train:
dataset.__loop_size__ = 1
if dataset_helper is None:
dataset_helper = DatasetHelper(dataset, dataset_sink_mode, sink_size, epoch_num)
if dataset_sink_mode:
network = connect_network_with_dataset(network, dataset_helper)
if _get_recovery_context("enable_recovery") and is_train:
_set_training_dataset(dataset_helper)
network.set_train(is_train)
network.phase = phase
self._backbone_is_train = is_train
return dataset_helper, network
def _check_network_mode(self, network, is_train):
"""
Change network mode if modes of backbone network and current network are not matching.
"""
if self._backbone_is_train != is_train:
network.set_train(is_train)
self._backbone_is_train = is_train
return network
def _warmup_dataset(self, epoch, train_dataset, sink_size=-1):
"""
Trigger dataset pipeline running before graph compiling.
Args:
epoch (int): Total number of iterations on the data.
train_dataset (Dataset): A training dataset iterator. If `train_dataset` is defined, training graphs will be
initialized. Default: ``None``.
sink_size (int): Control the amount of data in each sink. Default: -1.
"""
if sink_size == -1:
epoch_num = epoch
else:
epoch_num = math.ceil(epoch * sink_size / train_dataset.get_dataset_size())
train_dataset.__total_batch__ = epoch * sink_size
dataset_helper = None
dataset_helper, _ = self._exec_preprocess(is_train=True,
dataset=train_dataset,
dataset_sink_mode=True,
sink_size=sink_size,
epoch_num=epoch_num,
dataset_helper=dataset_helper)
train_dataset._dataset_helper = dataset_helper
train_dataset._warmup_epoch = epoch
def _init(self, train_dataset=None, valid_dataset=None, sink_size=-1, epoch=1):
"""
Initialize compute graphs and data graphs with the sink mode.
Note:
Pre-init process only supports `GRAPH_MODE` and `Ascend` target currently.
Args:
train_dataset (Dataset): A training dataset iterator. If `train_dataset` is defined, training graphs will be
initialized. Default: ``None``.
valid_dataset (Dataset): A evaluating dataset iterator. If `valid_dataset` is defined, evaluation graphs
will be initialized, and `metrics` in `Model` can not be None. Default: ``None``.
sink_size (int): Control the amount of data in each sink. Default: -1.
epoch (int): Total number of iterations on the data. Default: 1.
"""
if context.get_context("mode") != context.GRAPH_MODE or context.get_context("device_target") != "Ascend":
raise RuntimeError('Pre-init process only supports GRAPH MODE and Ascend target currently.')
if not train_dataset and not valid_dataset:
raise ValueError("The argument 'train_dataset' and 'valid_dataset' can not both be None or empty.")
_device_number_check(self._parallel_mode, self._device_number)
if train_dataset:
if not isinstance(train_dataset, mindspore.dataset.Dataset):
raise TypeError("The type of 'train_dataset' must be `Dataset`, "
"but got {}.".format(type(train_dataset)))
_parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast)
if self._parameter_broadcast:
self._train_network.set_broadcast_flag()
train_dataset.__no_send__ = True
train_dataset_helper, train_network = self._exec_preprocess(is_train=True,
dataset=train_dataset,
dataset_sink_mode=True,
sink_size=sink_size)
self._warmup_dataset(epoch, train_dataset, sink_size)
if context.get_auto_parallel_context("pipeline_stages") > 1 and valid_dataset:
train_network.add_flags_recursive(is_first_iteration=True)
for inputs in train_dataset_helper:
train_network.compile(*inputs)
break
if valid_dataset:
if not isinstance(valid_dataset, mindspore.dataset.Dataset):
raise TypeError("The type of 'valid_dataset' must be `Dataset`, "
"but got {}.".format(type(valid_dataset)))
if not self._metric_fns:
raise RuntimeError("If define `valid_dataset`, metric fn can not be None or empty, "
"you should set the argument 'metrics' for model.")
valid_dataset.__no_send__ = True
valid_dataset_helper, eval_network = self._exec_preprocess(is_train=False,
dataset=valid_dataset,
dataset_sink_mode=True)
if context.get_auto_parallel_context("pipeline_stages") > 1:
eval_network.add_flags_recursive(is_first_iteration=False)
for inputs in valid_dataset_helper:
eval_network.compile(*inputs)
break
@staticmethod
def _transform_callbacks(callbacks):
"""Transform callback to a list."""
if callbacks is None:
return []
if isinstance(callbacks, Iterable):
return list(callbacks)
return [callbacks]
@_save_final_ckpt
def _train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True, sink_size=-1, initial_epoch=0,
valid_dataset=None, valid_frequency=1, valid_dataset_sink_mode=True):
"""
Training.
Args:
epoch (int): Total number of iterations on the data.
train_dataset (Dataset): A training dataset iterator. If there is no
loss_fn, a tuple with multiple data (data1, data2, data3, ...) will be
returned and passed to the network. Otherwise, a tuple (data, label) will
be returned. The data and label would be passed to the network and loss
function respectively.
callbacks (list): List of callback objects which should be executed while training. Default: ``None``.
dataset_sink_mode (bool): Determine whether the data should be passed through the dataset channel.
Default: ``True``.
Configure pynative mode or CPU, the training process will be performed with
dataset not sink.
sink_size (int): Control the amount of data in each sink. Default: -1.
initial_epoch (int): Epoch at which to start train, it used for resuming a previous training run.
Default: 0.
"""
if self._parameter_broadcast:
self._train_network.set_broadcast_flag()
cb_params = _InternalCallbackParam()
cb_params.train_network = self._train_network
cb_params.epoch_num = epoch - initial_epoch
if dataset_sink_mode and sink_size > 0:
cb_params.batch_num = sink_size
else:
cb_params.batch_num = train_dataset.get_dataset_size()
cb_params.mode = "train"
cb_params.loss_fn = self._loss_fn
cb_params.optimizer = self._optimizer
cb_params.parallel_mode = self._parallel_mode
cb_params.device_number = self._device_number
cb_params.train_dataset = train_dataset
cb_params.list_callback = self._transform_callbacks(callbacks)
valid_infos = (valid_dataset, valid_frequency, valid_dataset_sink_mode)
cb_params.list_callback.insert(0, _FrameworkProfilerCallback())
if context.get_context("mode") == context.PYNATIVE_MODE:
cb_params.list_callback.insert(0, _StepSync())
callbacks = cb_params.list_callback
cb_params.train_dataset_element = None
cb_params.network = self._network
# Embedding cache server only run one step.
if _is_role_pserver() and _cache_enable():
epoch = 1
cb_params.last_save_ckpt_step = None
cb_params.latest_ckpt_file = None
# build callback list
with _CallbackManager(callbacks) as list_callback:
self._check_reuse_dataset(train_dataset)
if not dataset_sink_mode:
self._train_process(epoch, train_dataset, list_callback, cb_params, initial_epoch, valid_infos)
elif context.get_context("device_target") == "CPU":
logger.info("The CPU cannot support dataset sink mode currently."
"So the training process will be performed with dataset not sink.")
self._train_process(epoch, train_dataset, list_callback, cb_params, initial_epoch, valid_infos)
else:
self._train_dataset_sink_process(epoch, train_dataset, list_callback,
cb_params, sink_size, initial_epoch, valid_infos)
@staticmethod
def _should_eval(epoch, validation_freq):
return epoch % validation_freq == 0 if isinstance(validation_freq, int) else epoch in validation_freq
def _train_dataset_sink_process(self, epoch, train_dataset, list_callback=None, cb_params=None,
sink_size=-1, initial_epoch=0, valid_infos=None):
"""
Training process. The data would be passed to network through dataset channel.
Args:
epoch (int): Total number of iterations on the data.
train_dataset (Dataset): A training dataset iterator. If there is no
loss_fn, a tuple with multiple data (data1, data2, data3, ...) should be
returned and passed to the network. Otherwise, a tuple (data, label) should
be returned. The data and label would be passed to the network and loss
function respectively.
list_callback (Callback): Executor of callback list. Default: ``None``.
cb_params (_InternalCallbackParam): Callback parameters. Default: ``None``.
sink_size (int): Control the amount of data in each sink. Default: -1.
initial_epoch (int): Epoch at which to start train, it used for resuming a previous training run.
Default: 0.
"""
is_graph = (context.get_context("mode") == context.GRAPH_MODE)
dataset_size = train_dataset.get_dataset_size()
if dataset_size % sink_size != 0:
logger.warning("In dataset_sink mode (dataset_size % sink_size) should equal to 0, "
"it is suggested to pad/drop data or adjust sink_size. "
"But got 'dataset_size': {}, 'sink_size': {}.".format(dataset_size, sink_size))
if sink_size == -1:
dataset_sink_num = epoch
else:
dataset_sink_num = math.ceil(epoch * sink_size / dataset_size)
train_dataset.__total_batch__ = epoch * sink_size
cb_params.cur_step_num = 0
cb_params.dataset_sink_mode = True
run_context = RunContext(cb_params)
list_callback.on_train_begin(run_context)
# used to stop training for early stop, such as stopAtTIme or stopATStep
dataset_helper = None
if hasattr(train_dataset, '_dataset_helper'):
dataset_helper = train_dataset._dataset_helper
self.epoch_iter = 0
self._check_enable_recovery()
# Used to check whether need perform recovery for process which is restarted.
self._check_need_load_ckpt(cb_params, dataset_size, sink_size)
# Check whether this process is embedding cache server.
is_embedding_cache_server = _is_role_pserver() and _cache_enable()
while self.epoch_iter < (epoch - initial_epoch):
cb_params.cur_epoch_num = self.epoch_iter + 1 + initial_epoch
self._current_epoch_num = cb_params.cur_epoch_num
self._current_step_num = 0
list_callback.on_train_epoch_begin(run_context)
dataset_helper, train_network = self._exec_preprocess(is_train=True,
dataset=train_dataset,
dataset_sink_mode=True,
sink_size=sink_size,
epoch_num=dataset_sink_num,
dataset_helper=dataset_helper)
cb_params.train_network = train_network
cb_params.dataset_helper = dataset_helper
# Perform recovery for process which is restarted.
self._reset_training_step_for_abnormal_process(cb_params, dataset_helper)
# Perform recovery for process which is not restarted.
self._reset_training_step_for_normal_process(cb_params, dataset_helper)
# For data sink dataset_helper only iter once, other wise iter epoch_size times.
for inputs in dataset_helper:
if is_graph:
cb_params.cur_step_num += dataset_helper.sink_size()
else:
cb_params.cur_step_num += 1
self._current_step_num = int((cb_params.cur_step_num - 1) % cb_params.batch_num + 1)
cb_params.train_dataset_element = inputs
list_callback.on_train_step_begin(run_context)
train_network = self._check_network_mode(train_network, True)
outputs = train_network(*inputs)
cb_params.net_outputs = outputs
# In disaster recovery scenarios, need not to execute callbacks if this step executes failed.
need_exec_callback_step_end = not (self.enable_recovery and _get_recovery_context("need_reset"))
if need_exec_callback_step_end:
list_callback.on_train_step_end(run_context)
# Embedding cache server only run one step.
if is_embedding_cache_server:
break
dataset_helper.continue_send()
# When it's distributed training and using MindRT,
# the node id should be reset to start from 0.
# This is to avoid the timeout when finding the actor route tables in 'train' and 'eval' case(or 'fit').
if _enable_distributed_mindrt():
_reset_op_id_with_offset()
self._eval_during_train(valid_infos, cb_params, list_callback)
# In disaster recovery scenarios, need not to execute callbacks if this epoch executes failed.
# Embedding cache server need not do epoch end callback, this process only run one step.
need_exec_callback_epoch_end = not ((self.enable_recovery and _get_recovery_context("need_reset"))
or is_embedding_cache_server)
if need_exec_callback_epoch_end:
list_callback.on_train_epoch_end(run_context)
if "metrics" in cb_params or "eval_results" in cb_params:
cb_params.pop("metrics", None)
cb_params.pop("eval_results", None)
should_stop = run_context.get_stop_requested()
if should_stop:
break
need_reset_to_beginning = self.enable_recovery and _get_recovery_context("need_reset")\
and not _get_recovery_context("latest_ckpt_file")
self.epoch_iter += 1
if need_reset_to_beginning:
self.epoch_iter = 0
cb_params.cur_step_num = 0
dataset_helper.stop_send()
dataset_helper.release()
list_callback.on_train_end(run_context)
def _eval_during_train(self, valid_infos, cb_params, list_callback):
"""Exec eval during train process."""
valid_dataset, valid_frequency, valid_dataset_sink_mode = valid_infos
if valid_dataset and self._should_eval(cb_params.cur_epoch_num, valid_frequency):
train_cur_step_num = cb_params.cur_step_num
train_batch_num = cb_params.batch_num
train_dataset_sink_mode = cb_params.dataset_sink_mode
train_net_outputs = cb_params.net_outputs
eval_callback = []
for cb in list_callback._callbacks:
if cb.__class__.__name__ in internal_cb_names:
if isinstance(cb, TimeMonitor):
eval_callback.append(cb)
else:
eval_callback.append(cb)
self._eval_in_fit(valid_dataset,
callbacks=eval_callback,
dataset_sink_mode=valid_dataset_sink_mode,
cb_params=cb_params)
cb_params.mode = "train"
cb_params.cur_step_num = train_cur_step_num
cb_params.batch_num = train_batch_num
cb_params.dataset_sink_mode = train_dataset_sink_mode
cb_params.net_outputs = train_net_outputs
def _check_enable_recovery(self):
"""
Check whether enable recovery and execution mode consistency.
"""
enable_recovery = _get_recovery_context("enable_recovery")
if not enable_recovery:
self.enable_recovery = False
else:
if context.get_context("mode") != context.GRAPH_MODE:
raise RuntimeError("Recovery for training only support graph mode currently.")
self.enable_recovery = enable_recovery and _is_role_worker()
def _check_need_load_ckpt(self, cb_params, dataset_size, sink_size=-1):
"""
Check whether need to load checkpoint after abnormal process restart.
Args:
cb_params (_InternalCallbackParam): Callback parameters.
dataset_size (int): The number of batches in a dataset.
sink_size (int): Control the amount of data in each sink. Default: -1.
"""
if not self.enable_recovery:
self.need_load_ckpt = False
cb_params.latest_ckpt_file = _get_recovery_context("latest_ckpt_file")
if cb_params.latest_ckpt_file:
recovery_epoch_num = _get_recovery_context("latest_ckpt_epoch")
recovery_step_num = _get_recovery_context("latest_ckpt_step")
dataset_sink_size = sink_size if sink_size > 0 else dataset_size
cb_params.cur_step_num = (recovery_epoch_num - 1) * dataset_sink_size + recovery_step_num
cb_params.last_save_ckpt_step = cb_params.cur_step_num
self.epoch_iter = recovery_epoch_num
self.need_load_ckpt = True
else:
self.need_load_ckpt = False
def _reset_training_step_for_abnormal_process(self, cb_params, dataset_helper):
"""
Execute recovery for abnormal exit process when restart.
Args:
cb_params (_InternalCallbackParam): Callback parameters.
"""
if self.need_load_ckpt:
try:
load_checkpoint(cb_params.latest_ckpt_file, cb_params.train_network)
except BaseException as e:
os.remove(cb_params.latest_ckpt_file)
raise RuntimeError(e.__str__() + ", load ckpt failed and remove the ckpt: "\
+ cb_params.latest_ckpt_file) from e
_reset_training_dataset(cb_params.cur_step_num, dataset_helper.iter.dataset.get_dataset_size())
self.need_load_ckpt = False
def _reset_training_step_for_normal_process(self, cb_params, dataset_helper):
"""
Execute recovery for normal process when there is process exit abnormally.
Args:
cb_params (_InternalCallbackParam): Callback parameters.
dataset_helper (DatasetHelper): A class to process the MindData dataset,
it provides the type, shape and queue name of the dataset to wrap the `GetNext`.
"""
if self.enable_recovery and _get_recovery_context("need_reset"):
cb_params.latest_ckpt_file = _get_recovery_context("latest_ckpt_file")
if cb_params.latest_ckpt_file:
try:
load_checkpoint(cb_params.latest_ckpt_file, cb_params.train_network)
except BaseException as e:
os.remove(cb_params.latest_ckpt_file)
raise RuntimeError(e.__str__() + ", load ckpt failed and remove the ckpt: "\
+ cb_params.latest_ckpt_file) from e
recovery_epoch_num = _get_recovery_context("latest_ckpt_epoch")
recovery_step_num = _get_recovery_context("latest_ckpt_step")
cb_params.cur_step_num = (recovery_epoch_num - 1) * dataset_helper.sink_size() + recovery_step_num
self.epoch_iter = recovery_epoch_num
cb_params.cur_epoch_num = self.epoch_iter + 1
cb_params.last_save_ckpt_step = cb_params.cur_step_num
_reset_training_dataset(cb_params.cur_step_num, dataset_helper.iter.dataset.get_dataset_size())
else:
_reset_training_dataset(0, dataset_helper.iter.dataset.get_dataset_size())
_set_recovery_context(need_reset=False)
def _train_process(self, epoch, train_dataset, list_callback=None, cb_params=None, initial_epoch=0,
valid_infos=None):
"""
Training process. The data would be passed to network directly.
Args:
epoch (int): Total number of iterations on the data.
train_dataset (Dataset): A training dataset iterator. If there is no
loss_fn, a tuple with multiple data (data1, data2, data3, ...) should be
returned and passed to the network. Otherwise, a tuple (data, label) should
be returned. The data and label would be passed to the network and loss
function respectively.
list_callback (Callback): Executor of callback list. Default: ``None``.
cb_params (_InternalCallbackParam): Callback parameters. Default: ``None``.
initial_epoch (int): Epoch at which to start train, it used for resuming a previous training run.
Default: 0.
"""
dataset_helper, _ = self._exec_preprocess(is_train=True,
dataset=train_dataset,
dataset_sink_mode=False,
epoch_num=epoch)
cb_params.cur_step_num = 0
cb_params.dataset_sink_mode = False
run_context = RunContext(cb_params)
list_callback.on_train_begin(run_context)
is_embedding_cache_server = _is_role_pserver() and _cache_enable()
for i in range(initial_epoch, epoch):
cb_params.cur_epoch_num = i + 1
self._current_epoch_num = cb_params.cur_epoch_num
self._current_step_num = 0
list_callback.on_train_epoch_begin(run_context)
for next_element in dataset_helper:
len_element = len(next_element)
next_element = _transfer_tensor_to_tuple(next_element)
if self._loss_fn and len_element != 2:
raise ValueError("When 'loss_fn' is not None, 'train_dataset' should return "
"two elements, but got {}, please check the number of elements "
"returned by 'train_dataset'".format(len_element))
cb_params.cur_step_num += 1
self._current_step_num = int((cb_params.cur_step_num - 1) % cb_params.batch_num + 1)
cb_params.train_dataset_element = next_element
list_callback.on_train_step_begin(run_context)
self._check_network_mode(self._train_network, True)
outputs = self._train_network(*next_element)
cb_params.net_outputs = outputs
if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update():
overflow = outputs[1]
overflow = np.all(overflow.asnumpy())
self._loss_scale_manager.update_loss_scale(overflow)
list_callback.on_train_step_end(run_context)
# Embedding cache server only run one step.
if is_embedding_cache_server:
break
should_stop = run_context.get_stop_requested()
if should_stop:
break
# When it's distributed training and using MindRT,
# the node id should be reset to start from 0.
# This is to avoid the timeout when finding the actor route tables in 'train' and 'eval' case(or 'fit').
if _enable_distributed_mindrt():
_reset_op_id_with_offset()
self._eval_during_train(valid_infos, cb_params, list_callback)
train_dataset.reset()
# if param is cache enable, flush data from cache to host before epoch end
self._flush_from_cache(cb_params)
# Embedding cache server need not do epoch end callback, this process only run one step.
if not is_embedding_cache_server:
list_callback.on_train_epoch_end(run_context)
if "metrics" in cb_params or "eval_results" in cb_params:
cb_params.pop("metrics", None)
cb_params.pop("eval_results", None)
should_stop = run_context.get_stop_requested()
if should_stop:
break
list_callback.on_train_end(run_context)
[文档] def train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=False, sink_size=-1, initial_epoch=0):
"""
Training API.
When setting pynative mode or CPU, the training process will be performed with dataset not sink.
Note:
If dataset_sink_mode is True, data will be sent to device. If the device is Ascend, features
of data will be transferred one by one. The limitation of data transmission per time is 256M.
When dataset_sink_mode is True, the `step_end` method of the instance of Callback will be called at the end
of step in PyNative mode, or will be called at the end of epoch in Graph mode.
If dataset_sink_mode is True, dataset will be bound to this model and cannot be used by other models.
If sink_size > 0, each epoch of the dataset can be traversed unlimited times until you get sink_size
elements of the dataset. The next epoch continues to traverse from the end position of the previous
traversal.
The interface builds the computational graphs and then executes the computational graphs. However, when
the `Model.build` is executed first, it only performs the graphs execution.
Args:
epoch (int): Total training epochs. Generally, train network will be trained on complete dataset per epoch.
If `dataset_sink_mode` is set to True and `sink_size` is greater than 0, each epoch will
train `sink_size` steps instead of total steps of dataset.
If `epoch` used with `initial_epoch`, it is to be understood as "final epoch".
train_dataset (Dataset): A training dataset iterator. If `loss_fn` is defined, the data and label will be
passed to the `network` and the `loss_fn` respectively, so a tuple (data, label)
should be returned from dataset. If there is multiple data or labels, set `loss_fn`
to None and implement calculation of loss in `network`,
then a tuple (data1, data2, data3, ...) with all data returned from dataset will be
passed to the `network`.
callbacks (Optional[list[Callback], Callback]): List of callback objects or callback object,
which should be executed while training.
Default: ``None``.
dataset_sink_mode (bool): Determines whether to pass the data through dataset channel.
Configure pynative mode or CPU, the training process will be performed with
dataset not sink. Default: ``False``.
sink_size (int): Control the number of steps for each sinking.
`sink_size` is invalid if `dataset_sink_mode` is False.
If sink_size = -1, sink the complete dataset for each epoch.
If sink_size > 0, sink sink_size data for each epoch.
Default: -1.
initial_epoch (int): Epoch at which to start train, it used for resuming a previous training run.
Default: 0.
Examples:
>>> from mindspore import nn
>>> from mindspore.train import Model
>>>
>>> # Create the dataset taking MNIST as an example. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/mnist.py
>>> dataset = create_dataset()
>>> # Define the network structure of LeNet5. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
>>> net = LeNet5()
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> loss_scale_manager = ms.FixedLossScaleManager(1024., False)
>>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None,
... loss_scale_manager=loss_scale_manager)
>>> model.train(2, dataset)
"""
# prepare dataset for obfuscated model
train_dataset = self._prepare_obf_dataset(train_dataset)
device_target = context.get_context("device_target")
if _is_ps_mode() and not _cache_enable() and (device_target in ["Ascend", "CPU"]) and dataset_sink_mode:
logger.info("For PS mode, reset datasink mode to False when using Ascend or CPU backend.")
dataset_sink_mode = False
Validator.check_bool(dataset_sink_mode)
if isinstance(self._train_network, nn.GraphCell) and dataset_sink_mode:
raise ValueError("Dataset sink mode is currently not supported when training with a GraphCell.")
if hasattr(train_dataset, '_warmup_epoch') and train_dataset._warmup_epoch != epoch:
raise ValueError("when use Model.build to initialize model, the value of parameter 'epoch' in Model.build "
"should be equal to value in Model.train, but got the value of epoch in build {} and "
"the value of epoch in train {} separately."
.format(train_dataset._warmup_epoch, epoch))
# Parameter server and embedding cache mode check.
if _is_ps_mode():
if not dataset_sink_mode and _cache_enable():
raise ValueError("Embedding cache mode should run with 'dataset_sink_mode=True'.")
self._check_sink_mode_for_ds_debug_mode(dataset_sink_mode)
Validator.check_is_int(sink_size)
Validator.check_positive_int(epoch)
Validator.check_non_negative_int(initial_epoch)
if initial_epoch >= epoch:
raise ValueError(f"For 'Model.train', the parameter 'epoch' must bigger than parameter 'initial_epoch',"
f" but got the parameter 'epoch' is {epoch}, 'initial_epoch' is {initial_epoch}.")
dataset_size = train_dataset.get_dataset_size()
if dataset_size == 0:
raise ValueError("There is no valid data in dataset, please check dataset file firstly.")
if sink_size == -1:
sink_size = dataset_size
if sink_size < -1 or sink_size == 0:
raise ValueError("For 'Model.train', The argument 'sink_size' must be -1 or positive, "
"but got {}.".format(sink_size))
_device_number_check(self._parallel_mode, self._device_number)
if callbacks:
self._check_methods_for_custom_callbacks(callbacks, "train")
self._train(epoch,
train_dataset,
callbacks=callbacks,
dataset_sink_mode=dataset_sink_mode,
sink_size=sink_size,
initial_epoch=initial_epoch)
# When it's distributed training and using MindRT,
# the node id should be reset to start from 0.
# This is to avoid the timeout when finding the actor route tables in 'train' and 'eval' case(or 'fit').
if _enable_distributed_mindrt():
_reset_op_id_with_offset()
@staticmethod
def _check_sink_mode_for_ds_debug_mode(dataset_sink_mode):
if get_debug_mode() and dataset_sink_mode:
raise ValueError("Dataset sink mode is not supported when dataset pipeline debug mode is on. "
"Please manually turn off sink mode.")
@staticmethod
def _check_methods_for_custom_callbacks(callbacks, current_mode):
"""
Check whether methods of custimized callbacks are valid.
Args:
callbacks (Optional[list[Callback], Callback]): List of callback objects or callback object.
current_mode (str): 'fit', 'train' or 'eval'.
"""
old_version_methods_names = {'begin', 'end', 'epoch_begin', 'epoch_end', 'step_begin', 'step_end'}
if not isinstance(callbacks, list):
callbacks = [callbacks]
for cb in callbacks:
cb_name = cb.__class__.__name__
if cb_name not in internal_cb_names:
cb_methods_names = set(cb.__class__.__dict__.keys())
invalid_methods_names = cb_methods_names & old_version_methods_names
if invalid_methods_names:
if current_mode in ["train", "eval"]:
logger.warning("For %s callback, %s methods may not be supported in later version, "
"Use methods prefixed with 'on_train' or 'on_eval' instead "
"when using customized callbacks." % (cb_name, invalid_methods_names))
else:
raise ValueError("For %s callback, %s methods may not be supported in later version, "
"Use methods prefixed with 'on_train' or 'on_eval' instead when "
"using customized callbacks." % (cb_name, invalid_methods_names))
[文档] def fit(self, epoch, train_dataset, valid_dataset=None, valid_frequency=1, callbacks=None,
dataset_sink_mode=False, valid_dataset_sink_mode=False, sink_size=-1, initial_epoch=0):
"""
Fit API.
Evaluation process will be performed during training process if `valid_dataset` is provided.
More details please refer to :func:`mindspore.train.Model.train` and
:func:`mindspore.train.Model.eval`.
Args:
epoch (int): Total training epochs. Generally, train network will be trained on complete dataset per epoch.
If `dataset_sink_mode` is set to True and `sink_size` is greater than 0, each epoch will
train `sink_size` steps instead of total steps of dataset.
If `epoch` used with `initial_epoch`, it is to be understood as "final epoch".
train_dataset (Dataset): A training dataset iterator. If `loss_fn` is defined, the data and label will be
passed to the `network` and the `loss_fn` respectively, so a tuple (data, label)
should be returned from dataset. If there is multiple data or labels, set `loss_fn`
to None and implement calculation of loss in `network`,
then a tuple (data1, data2, data3, ...) with all data returned from dataset
will be passed to the `network`.
valid_dataset (Dataset): Dataset to evaluate the model. If `valid_dataset` is provided, evaluation process
will be performed on the end of training process. Default: ``None`` .
valid_frequency (int, list): Only relevant if `valid_dataset` is provided. If an integer, specifies
how many training epochs to run before a new validation run is performed,
e.g. `valid_frequency=2` runs validation every 2 epochs.
If a list, specifies the epochs on which to run validation,
e.g. `valid_frequency=[1, 5]` runs validation at the end of the 1st, 5th epochs.
Default: ``1`` .
callbacks (Optional[list[Callback], Callback]): List of callback objects or callback object,
which should be executed while training.
Default: ``None`` .
dataset_sink_mode (bool): Determines whether to pass the train data through dataset channel.
Configure pynative mode or CPU, the training process will be performed with
dataset not sink. Default: ``False`` .
valid_dataset_sink_mode (bool): Determines whether to pass the validation data through dataset channel.
Default: ``False`` .
sink_size (int): Control the number of steps for each sinking.
`sink_size` is invalid if `dataset_sink_mode` is False.
If sink_size = -1, sink the complete dataset for each epoch.
If sink_size > 0, sink sink_size data for each epoch.
Default: ``-1`` .
initial_epoch (int): Epoch at which to start train, it useful for resuming a previous training run.
Default: ``0`` .
Examples:
>>> from mindspore import nn
>>> from mindspore.train import Model
>>>
>>> # Create the dataset taking MNIST as an example. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/mnist.py
>>> train_dataset = create_dataset("train")
>>> valid_dataset = create_dataset("test")
>>> # Define the network structure of LeNet5. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
>>> net = LeNet5()
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics={"accuracy"})
>>> model.fit(2, train_dataset, valid_dataset)
Tutorial Examples:
- `Advanced Encapsulation: Model - Train and Save Model
<https://www.mindspore.cn/tutorials/en/r2.2/advanced/model.html#training-and-saving-model>`_
"""
device_target = context.get_context("device_target")
if _is_ps_mode() and not _cache_enable() and (device_target in ["Ascend", "CPU"]) and dataset_sink_mode:
logger.info("For PS mode, reset datasink mode to False when using Ascend or CPU backend.")
dataset_sink_mode = False
dataset_sink_mode = Validator.check_bool(dataset_sink_mode)
valid_dataset_sink_mode = Validator.check_bool(valid_dataset_sink_mode)
if isinstance(self._train_network, nn.GraphCell) and dataset_sink_mode:
raise ValueError("Dataset sink mode is currently not supported when training with a GraphCell.")
if hasattr(train_dataset, '_warmup_epoch') and train_dataset._warmup_epoch != epoch:
raise ValueError("when use Model.build to initialize model, the value of parameter `epoch` in Model.build "
"should be equal to value in Model.fit, but got {} and {} separately."
.format(train_dataset._warmup_epoch, epoch))
Validator.check_is_int(sink_size)
Validator.check_positive_int(epoch)
Validator.check_non_negative_int(initial_epoch)
if initial_epoch >= epoch:
raise ValueError(f"For 'Model.fit', the parameter 'epoch' must bigger than parameter 'initial_epoch',"
f" but got the parameter 'epoch' is {epoch}, 'initial_epoch' is {initial_epoch}.")
dataset_size = train_dataset.get_dataset_size()
if dataset_size == 0:
raise ValueError("There is no valid data in dataset, please check dataset file firstly.")
if sink_size == -1:
sink_size = dataset_size
if sink_size < -1 or sink_size == 0:
raise ValueError("For 'Model.fit', The parameter 'sink_size' must be -1 or positive, "
"but got {}.".format(sink_size))
_device_number_check(self._parallel_mode, self._device_number)
if not isinstance(valid_frequency, (int, list)):
raise TypeError(f"For 'Model.fit', the type of 'valid_frequency' must be a list or an integer, but got "
f"type {type(valid_frequency)}.")
if valid_dataset and not self._metric_fns:
raise ValueError("For 'Model.fit', if valid_dataset is not None, the model argument 'metrics' can not be"
"None or empty, you should set the argument 'metrics' for model.")
if callbacks:
self._check_methods_for_custom_callbacks(callbacks, "fit")
self._train(epoch,
train_dataset,
callbacks=callbacks,
dataset_sink_mode=dataset_sink_mode,
sink_size=sink_size,
initial_epoch=initial_epoch,
valid_dataset=valid_dataset,
valid_frequency=valid_frequency,
valid_dataset_sink_mode=valid_dataset_sink_mode)
[文档] def build(self, train_dataset=None, valid_dataset=None, sink_size=-1, epoch=1):
"""
Build computational graphs and data graphs with the sink mode.
.. warning::
This is an experimental API that is subject to change or deletion.
Note:
The interface builds the computational graphs, when the interface is executed first, 'Model.train' only
performs the graphs execution. Pre-build process only supports `GRAPH_MODE` and `Ascend` target currently.
It only supports dataset sink mode.
Args:
train_dataset (Dataset): A training dataset iterator. If `train_dataset` is defined, training graphs will be
built. Default: ``None`` .
valid_dataset (Dataset): An evaluating dataset iterator. If `valid_dataset` is defined, evaluation graphs
will be built, and `metrics` in `Model` can not be None. Default: ``None`` .
sink_size (int): Control the number of steps for each sinking. Default: ``-1`` .
epoch (int): Control the training epochs. Default: ``1`` .
Examples:
>>> from mindspore import nn
>>> from mindspore.train import Model
>>> from mindspore.amp import FixedLossScaleManager
>>>
>>> # Create the dataset taking MNIST as an example. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/mnist.py
>>> dataset = create_dataset()
>>> # Define the network structure of LeNet5. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
>>> net = LeNet5()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> loss_scale_manager = FixedLossScaleManager()
>>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None,
... loss_scale_manager=loss_scale_manager)
>>> model.build(dataset, epoch=2)
>>> model.train(2, dataset)
"""
epoch = Validator.check_positive_int(epoch)
if hasattr(self._train_network, '_is_check_and_refresh') and not self._train_network._is_check_and_refresh:
self._train_network.check_names_and_refresh_name()
self._train_network._is_check_and_refresh = True
self._init(train_dataset, valid_dataset, sink_size, epoch)
def _eval_in_fit(self, valid_dataset, callbacks=None, dataset_sink_mode=True, cb_params=None):
"""
Evaluation process in `mindspore.train.Model.fit`.
Args:
valid_dataset (Dataset): Dataset to evaluate the model. If `valid_dataset` is provided, evaluation process
will be performed on the end of training process. Default: ``None``.
callbacks (Optional[list[Callback], Callback]): List of callback objects or callback object, which should be
executed while evaluation. Default: ``None``.
valid_dataset_sink_mode (bool): Determines whether to pass the validation data through dataset channel.
Default: ``True``.
cb_params (_InternalCallbackParam): Callback parameters. Default: ``None``.
"""
if isinstance(self._eval_network, nn.GraphCell) and dataset_sink_mode:
raise ValueError("Sink mode is currently not supported when evaluating with a GraphCell.")
cb_params.eval_network = self._eval_network
cb_params.valid_dataset = valid_dataset
cb_params.batch_num = valid_dataset.get_dataset_size()
cb_params.mode = "eval"
cb_params.cur_step_num = 0
self._clear_metrics()
if context.get_context("device_target") == "CPU" and dataset_sink_mode:
dataset_sink_mode = False
logger.info("CPU cannot support dataset sink mode currently."
"So the evaluating process will be performed with dataset non-sink mode.")
with _CallbackManager(callbacks) as list_callback:
if dataset_sink_mode:
return self._eval_dataset_sink_process(valid_dataset, list_callback, cb_params, add_eval_loss=True)
return self._eval_process(valid_dataset, list_callback, cb_params, add_eval_loss=True)
def _eval_dataset_sink_process(self, valid_dataset, list_callback=None, cb_params=None, add_eval_loss=False):
"""
Evaluation. The data would be passed to network through dataset channel.
Args:
valid_dataset (Dataset): Dataset to evaluate the model.
list_callback (Callback): Executor of callback list. Default: ``None``.
cb_params (_InternalCallbackParam): Callback parameters. Default: ``None``.
Returns:
Dict, which returns the loss value and metrics values for the model in the test mode.
"""
run_context = RunContext(cb_params)
dataset_helper, eval_network = self._exec_preprocess(is_train=False,
dataset=valid_dataset,
dataset_sink_mode=True)
cb_params.eval_network = eval_network
cb_params.dataset_sink_mode = True
list_callback.on_eval_begin(run_context)
list_callback.on_eval_epoch_begin(run_context)
for inputs in dataset_helper:
cb_params.cur_step_num += 1
inputs = _transfer_tensor_to_tuple(inputs)
cb_params.eval_dataset_element = inputs
list_callback.on_eval_step_begin(run_context)
eval_network = self._check_network_mode(eval_network, False)
outputs = eval_network(*inputs)
cb_params.net_outputs = outputs
list_callback.on_eval_step_end(run_context)
self._update_metrics(outputs)
if add_eval_loss:
eval_loss_fn = get_metric_fn("loss")
eval_loss_fn.update(outputs[self._eval_indexes[0]])
list_callback.on_eval_epoch_end(run_context)
metrics = self._get_metrics()
cb_params.metrics = metrics
if add_eval_loss:
eval_loss = eval_loss_fn.eval()
cb_params.eval_results = copy.deepcopy(metrics)
cb_params.eval_results.update({"eval_loss": eval_loss})
list_callback.on_eval_end(run_context)
return metrics
def _eval_process(self, valid_dataset, list_callback=None, cb_params=None, add_eval_loss=False):
"""
Evaluation. The data would be passed to network directly.
Args:
valid_dataset (Dataset): Dataset to evaluate the model.
list_callback (Callback): Executor of callback list. Default: ``None``.
cb_params (_InternalCallbackParam): Callback parameters. Default: ``None``.
Returns:
Dict, which returns the loss value and metrics values for the model in the test mode.
"""
run_context = RunContext(cb_params)
cb_params.dataset_sink_mode = False
list_callback.on_eval_begin(run_context)
dataset_helper, _ = self._exec_preprocess(is_train=False,
dataset=valid_dataset,
dataset_sink_mode=False)
list_callback.on_eval_epoch_begin(run_context)
for next_element in dataset_helper:
cb_params.cur_step_num += 1
next_element = _transfer_tensor_to_tuple(next_element)
cb_params.eval_dataset_element = next_element
list_callback.on_eval_step_begin(run_context)
self._check_network_mode(self._eval_network, False)
outputs = self._eval_network(*next_element)
cb_params.net_outputs = outputs
list_callback.on_eval_step_end(run_context)
self._update_metrics(outputs)
if add_eval_loss:
eval_loss_fn = get_metric_fn("loss")
eval_loss_fn.update(outputs[self._eval_indexes[0]])
if run_context.get_stop_requested():
break
list_callback.on_eval_epoch_end(run_context)
valid_dataset.reset()
metrics = self._get_metrics()
cb_params.metrics = metrics
if add_eval_loss:
eval_loss = eval_loss_fn.eval()
cb_params.eval_results = copy.deepcopy(metrics)
cb_params.eval_results.update({"eval_loss": eval_loss})
list_callback.on_eval_end(run_context)
return metrics
[文档] def eval(self, valid_dataset, callbacks=None, dataset_sink_mode=False):
"""
Evaluation API.
Configure to pynative mode or CPU, the evaluating process will be performed with dataset non-sink mode.
Note:
If dataset_sink_mode is True, data will be sent to device. At this point, the dataset will be bound to this
model, so the dataset cannot be used by other models. If the device is Ascend, features
of data will be transferred one by one. The limitation of data transmission per time is 256M.
The interface builds the computational graphs and then executes the computational graphs. However, when
the `Model.build` is executed first, it only performs the graphs execution.
Args:
valid_dataset (Dataset): Dataset to evaluate the model.
callbacks (Optional[list(Callback), Callback]): List of callback objects or callback object,
which should be executed while evaluation.
Default: ``None`` .
dataset_sink_mode (bool): Determines whether to pass the data through dataset channel.
Default: ``False`` .
Returns:
Dict, the key is the metric name defined by users and the value is the metrics value for
the model in the test mode.
Examples:
>>> from mindspore import nn
>>> from mindspore.train import Model
>>>
>>> # Create the dataset taking MNIST as an example. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/mnist.py
>>> dataset = create_dataset()
>>> # Define the network structure of LeNet5. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
>>> net = LeNet5()
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'})
>>> acc = model.eval(dataset, dataset_sink_mode=False)
Tutorial Examples:
- `Advanced Encapsulation: Model - Train and Save Model
<https://www.mindspore.cn/tutorials/en/r2.2/advanced/model.html#training-and-saving-model>`_
"""
valid_dataset = self._prepare_obf_dataset(valid_dataset)
dataset_sink_mode = Validator.check_bool(dataset_sink_mode)
_device_number_check(self._parallel_mode, self._device_number)
if not self._metric_fns:
raise ValueError("For Model.eval, the model argument 'metrics' can not be None or empty, "
"you should set the argument 'metrics' for model.")
if isinstance(self._eval_network, nn.GraphCell) and dataset_sink_mode:
raise ValueError("Sink mode is currently not supported when evaluating with a GraphCell.")
if callbacks:
self._check_methods_for_custom_callbacks(callbacks, "eval")
cb_params = _InternalCallbackParam()
cb_params.eval_network = self._eval_network
cb_params.valid_dataset = valid_dataset
cb_params.batch_num = valid_dataset.get_dataset_size()
cb_params.mode = "eval"
cb_params.cur_step_num = 0
cb_params.list_callback = self._transform_callbacks(callbacks)
cb_params.network = self._network
self._clear_metrics()
# Embedding cache server as a storage service, no need to execute eval.
is_embedding_cache_server = _is_role_pserver() and _cache_enable()
if is_embedding_cache_server:
metrics = self._get_metrics()
cb_params.metrics = metrics
return metrics
if context.get_context("device_target") == "CPU" and dataset_sink_mode:
dataset_sink_mode = False
logger.info("CPU cannot support dataset sink mode currently."
"So the evaluating process will be performed with dataset non-sink mode.")
with _CallbackManager(callbacks) as list_callback:
if dataset_sink_mode:
eval_result = self._eval_dataset_sink_process(valid_dataset, list_callback, cb_params)
else:
eval_result = self._eval_process(valid_dataset, list_callback, cb_params)
# When it's distributed training and using MindRT,
# the node id should be reset to start from 0.
# This is to avoid the timeout when finding the actor route tables in 'train' and 'eval' case(or 'fit').
if _enable_distributed_mindrt():
_reset_op_id_with_offset()
return eval_result
def _predict_lite(self, *predict_data, config=None):
"""
Generate output predictions for the input samples using backend 'lite'.
Args:
predict_data (Union[Tensor, list[Tensor], tuple[Tensor]], optional):
The predict data, can be a single tensor,
a list of tensor, or a tuple of tensor.
config (dict, optional) - The config parameter is enabled when the backend is ‘lite’.
The config includes two parts: config_path (configPath, str) and config_item (str, dict).
When the config_item is set, its priority is higher than the config_path. Set the ranking
table file for inference. The content of the configuration file is as follows:
config_path defines the path of the configuration file, which is used to pass user-defined
options during model building. In the following scenarios, users may need to set parameters.
For example: "/home/user/config.ini". Default value: ``"" `` , here is the content of the
config.ini file:
.. code-block::
[ascend_context]
rank_table_file = [path_a](storage initial path of the rank table file)
[execution_plan]
[op_name1] = data_type:float16 (operator named op_name1 is set to data type Float16)
[op_name2] = data_type:float32 (operator named op_name2 is set to data type Float32)
When only the config_path is configured, it is done as follows:
.. code-block::
config = {"configPath" : "/home/user/config.ini"}
When only the config_dict is configured, it is done as follows:
.. code-block::
config = {"ascend_context" : {"rank_table_file" : "path_b"},
"execution_plan" : {"op_name1" : "data_type:float16", "op_name2" : "data_type:float32"}}
When both the `config_path` and the `config_dict` are configured, it is done as follows:
.. code-block::
config = {"configPath" : "/home/user/config.ini",
"ascend_context" : {"rank_table_file" : "path_b"},
"execution_plan" : {"op_name3" : "data_type:float16", "op_name4" : "data_type:float32"}}
Note that both the "configPath" is configured in the config_dict and the config_item,
in this case, the path_b in the config_dict takes precedence.
Returns:
Tensor, array(s) of predictions.
"""
def _get_lite_context(lite_context_input):
# use default lite context parameters for now
device_target = context.get_context("device_target").lower()
lite_context_input.target = [device_target]
if device_target == 'cpu':
inter_op_parallel_num = context.get_context('inter_op_parallel_num')
if inter_op_parallel_num and isinstance(inter_op_parallel_num, int):
lite_context_input.cpu.inter_op_parallel_num = inter_op_parallel_num
elif device_target == 'gpu':
device_id = context.get_context('device_id')
if device_id and isinstance(device_id, int):
lite_context_input.gpu.device_id = device_id
if context.get_auto_parallel_context("parallel_mode") == context.ParallelMode.SEMI_AUTO_PARALLEL:
from mindspore.communication import init, get_rank
init()
lite_context_input.gpu.rank_id = get_rank()
elif device_target == 'ascend':
device_id = context.get_context('device_id')
if device_id and isinstance(device_id, int):
lite_context_input.ascend.device_id = device_id
if context.get_auto_parallel_context("parallel_mode") == context.ParallelMode.SEMI_AUTO_PARALLEL:
from mindspore.communication import init, get_rank
init()
lite_context_input.ascend.rank_id = get_rank()
lite_context_input.ascend.provider = "ge"
else:
raise RuntimeError(f"For predict lite, device target should be in ['gpu', 'cpu', 'ascend']"
f" but got {device_target}")
return lite_context_input
if not self._mindspore_lite:
self._mindspore_lite = importlib.import_module('mindspore_lite')
use_past = False # default execute full model inference
model_group_id = None
if self._predict_network.get_flags().__contains__("is_first_iteration"):
is_first_iteration = self._predict_network.get_flags()['is_first_iteration']
if isinstance(is_first_iteration, bool):
use_past = not is_first_iteration
model_group_id = self._mindspore_lite_model_group_id
check_input_data(*predict_data, data_class=(int, float, str, None, Tensor))
if use_past:
# Execute incremental model inference
if not self._lite_incremental_predictor:
lite_context = _get_lite_context(self._mindspore_lite.Context())
self._lite_incremental_predictor = \
self._mindspore_lite.lite_infer.LiteInfer(self, *predict_data, context=lite_context,
model_group_id=model_group_id, config=config)
inputs = self._lite_incremental_predictor.get_inputs()
if len(predict_data) != len(inputs):
raise RuntimeError(f"For 'Model.predict', numbers of predict_data {len(predict_data)} "
f"is not equal to numbers of net input {len(inputs)}")
for i, single_data in enumerate(predict_data):
inputs[i].set_data_from_numpy(single_data.asnumpy())
outputs: list = self._lite_incremental_predictor.predict(inputs)
else:
# Execute full model inference
if not self._lite_full_predictor:
lite_context = _get_lite_context(self._mindspore_lite.Context())
self._lite_full_predictor = \
self._mindspore_lite.lite_infer.LiteInfer(self, *predict_data, context=lite_context,
model_group_id=model_group_id, config=config)
inputs = self._lite_full_predictor.get_inputs()
if len(predict_data) != len(inputs):
raise RuntimeError(f"For 'Model.predict', numbers of predict_data {len(predict_data)} "
f"is not equal to numbers of net input {len(inputs)}")
for i, single_data in enumerate(predict_data):
inputs[i].set_data_from_numpy(single_data.asnumpy())
outputs: list = self._lite_full_predictor.predict(inputs)
if not outputs:
return Tensor(outputs)
if len(outputs) == 1:
return Tensor(outputs[0].get_data_to_numpy())
outputs = [Tensor(single_output.get_data_to_numpy()) for single_output in outputs]
return tuple(outputs)
[文档] def predict(self, *predict_data, backend=None, config=None):
"""
Generate output predictions for the input samples.
Args:
predict_data (Union[Tensor, list[Tensor], tuple[Tensor]], optional):
The predict data, can be a single tensor,
a list of tensor, or a tuple of tensor.
backend (str): Select predict backend, this parameter is an experimental feature
and is mainly used for MindSpore Lite cloud-side inference. Default: ``None`` .
config (dict, optional) - The config parameter is enabled when the backend is ‘lite’.
The config includes two parts: config_path (configPath, str) and config_item (str, dict).
When the config_item is set, its priority is higher than the config_path. Set the ranking
table file for inference. The content of the configuration file is as follows:
config_path defines the path of the configuration file, which is used to pass user-defined
options during model building. In the following scenarios, users may need to set parameters.
For example: "/home/user/config.ini". Default value: ``""`` , here is the content of the
config.ini file:
.. code-block::
[ascend_context]
rank_table_file = [path_a](storage initial path of the rank table file)
[execution_plan]
[op_name1] = data_type:float16 (operator named op_name1 is set to data type Float16)
[op_name2] = data_type:float32 (operator named op_name2 is set to data type Float32)
When only the config_path is configured, it is done as follows:
.. code-block::
config = {"configPath" : "/home/user/config.ini"}
When only the config_dict is configured, it is done as follows:
.. code-block::
config = {"ascend_context" : {"rank_table_file" : "path_b"},
"execution_plan" : {"op_name1" : "data_type:float16", "op_name2" : "data_type:float32"}}
When both the `config_path` and the `config_dict` are configured, it is done as follows:
.. code-block::
config = {"configPath" : "/home/user/config.ini",
"ascend_context" : {"rank_table_file" : "path_b"},
"execution_plan" : {"op_name3" : "data_type:float16", "op_name4" : "data_type:float32"}}
Note that both the "configPath" is configured in the config_dict and the config_item,
in this case, the path_b in the config_dict takes precedence.
Returns:
Tensor, array(s) of predictions.
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> from mindspore.train import Model
>>>
>>> input_data = Tensor(np.random.randint(0, 255, [1, 1, 32, 32]), mindspore.float32)
>>> # Define the network structure of LeNet5. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
>>> model = Model(LeNet5())
>>> result = model.predict(input_data)
"""
if backend not in ['lite', None]:
raise ValueError(f"For Model.predict, `backend` should be 'lite' or None, but got {backend}")
if backend == "lite" and self._lite_infer:
# pylint: disable=broad-except
try:
return self._predict_lite(*predict_data, config=config)
except RuntimeError:
self._lite_infer = False
logger.warning("Lite inference failed, fallback to original inference!")
except ImportError:
self._lite_infer = False
logger.warning("Import mindspore_lite failed, fallback to original inference!")
except BaseException as e:
self._lite_infer = False
logger.warning(f"Lite inference failed, {e.__str__()}, fallback to original inference!")
self._check_network_mode(self._predict_network, False)
check_input_data(*predict_data, data_class=(int, float, str, None, Tensor))
_parallel_predict_check()
result = self._predict_network(*predict_data)
check_output_data(result)
# When it's distributed training and using MindRT,
# the node id should be reset to start from 0.
# This is to avoid the timeout when finding the actor route tables in 'train' and 'eval' case(or 'fit').
if _enable_distributed_mindrt():
_reset_op_id_with_offset()
return result
def _infer_train_check(self, train_dataset, dataset_sink_mode, sink_size):
"""
Check arguments of training.
Args:
train_dataset (Dataset): A training dataset iterator.
dataset_sink_mode (bool): Determines whether to pass the data through dataset channel.
sink_size (int): Control the amount of data in each sink.
"""
if context.get_context("mode") != context.GRAPH_MODE:
raise RuntimeError("Pre-compile process that generate parameter layout for the train network "
"only supports GRAPH MODE and Ascend target currently.")
if _get_parallel_mode() not in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
raise RuntimeError("'infer_train_layout' only supports 'semi_auto_parallel' and 'auto_parallel' "
"mode, but got {}.".format(_get_parallel_mode()))
dataset_sink_mode = Validator.check_bool(dataset_sink_mode)
if not dataset_sink_mode:
raise ValueError("Only dataset sink mode is supported for now.")
if isinstance(self._train_network, nn.GraphCell) and dataset_sink_mode:
raise ValueError("Dataset sink mode is currently not supported when training with a GraphCell.")
Validator.check_is_int(sink_size)
dataset_size = train_dataset.get_dataset_size()
if dataset_size == 0:
raise ValueError("There is no valid data in dataset, please check dataset file firstly.")
if sink_size == -1:
sink_size = dataset_size
if sink_size < -1 or sink_size == 0:
raise ValueError("For 'infer_train_layout', the argument 'sink_size' must be -1 or positive, "
"but got sink_size {}.".format(sink_size))
[文档] def infer_train_layout(self, train_dataset, dataset_sink_mode=True, sink_size=-1):
"""
Generate parameter layout for the train network in 'AUTO_PARALLEL' or 'SEMI_AUTO_PARALLEL' mode.
Only dataset sink mode is supported for now.
.. warning::
This is an experimental API that is subject to change or deletion.
Note:
This is a pre-compile function. The arguments should be the same as model.train() function.
Args:
train_dataset (Dataset): A training dataset iterator. If there is no
loss_fn, a tuple with multiple data (data1, data2, data3, ...) should be
returned and passed to the network. Otherwise, a tuple (data, label) should
be returned. The data and label would be passed to the network and loss
function respectively.
dataset_sink_mode (bool): Determines whether to pass the data through dataset channel.
Configure pynative mode or CPU, the training process will be performed with
dataset not sink. Default: ``True`` .
sink_size (int): Control the number of steps for each sinking.
If sink_size = -1, sink the complete dataset for each epoch.
If sink_size > 0, sink sink_size data for each epoch.
If dataset_sink_mode is False, set sink_size as invalid.
Default: ``-1`` .
Returns:
Dict, Parameter layout dictionary used for load distributed checkpoint
Examples:
>>> # This example should be run with multiple devices. Refer to the tutorial > Distributed Training on
>>> # mindspore.cn.
>>> import numpy as np
>>> import mindspore as ms
>>> from mindspore import Tensor, nn
>>> from mindspore.train import Model
>>> from mindspore.communication import init
>>>
>>> ms.set_context(mode=ms.GRAPH_MODE)
>>> init()
>>> ms.set_auto_parallel_context(parallel_mode=ms.ParallelMode.SEMI_AUTO_PARALLEL)
>>>
>>> # Create the dataset taking MNIST as an example. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/mnist.py
>>> dataset = create_dataset()
>>> # Define the network structure of LeNet5. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
>>> net = LeNet5()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> loss_scale_manager = ms.FixedLossScaleManager()
>>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None,
... loss_scale_manager=loss_scale_manager)
>>> layout_dict = model.infer_train_layout(dataset)
"""
self._infer_train_check(train_dataset, dataset_sink_mode, sink_size)
train_dataset.__no_send__ = True
train_dataset_helper, train_network = self._exec_preprocess(is_train=True,
dataset=train_dataset,
dataset_sink_mode=dataset_sink_mode,
sink_size=sink_size)
for inputs in train_dataset_helper:
train_network.compile(*inputs)
break
train_dataset.__model_hash__ = hash(self)
return train_network.parameter_layout_dict
[文档] def infer_predict_layout(self, *predict_data, skip_backend_compile=False):
"""
Generate parameter layout for the predict network in 'AUTO_PARALLEL' or 'SEMI_AUTO_PARALLEL' mode.
Data could be a single tensor or multiple tensors.
Note:
Batch data should be put together in one tensor.
Args:
predict_data (Union[Tensor, list[Tensor], tuple[Tensor]], optional):
The predict data, can be a single tensor,
a list of tensor, or a tuple of tensor.
skip_backend_compile (bool): Only run the frontend compile process,
skip the compile process on the device side. Set this flag to True may
lead to recompiling process can not hit cache.
Returns:
Dict, Parameter layout dictionary used for load distributed checkpoint.
Using as one of input parameters of load_distributed_checkpoint, always.
Raises:
RuntimeError: If not in GRAPH_MODE.
Examples:
>>> # This example should be run with multiple devices. Refer to the tutorial > Distributed Training on
>>> # mindspore.cn.
>>> import numpy as np
>>> import mindspore as ms
>>> from mindspore import Tensor
>>> from mindspore.train import Model
>>> from mindspore.communication import init
>>>
>>> ms.set_context(mode=ms.GRAPH_MODE)
>>> init()
>>> ms.set_auto_parallel_context(full_batch=True, parallel_mode=ms.ParallelMode.SEMI_AUTO_PARALLEL)
>>> input_data = Tensor(np.random.randint(0, 255, [1, 1, 32, 32]), ms.float32)
>>> model = Model(Net())
>>> predict_map = model.infer_predict_layout(input_data)
"""
if context.get_context("mode") != context.GRAPH_MODE:
raise RuntimeError("Pre-compile process that generate parameter layout for the predict network "
"only supports GRAPH MODE and Ascend target currently.")
if _get_parallel_mode() not in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
raise RuntimeError('Infer predict layout only supports semi auto parallel and auto parallel mode.')
_parallel_predict_check()
check_input_data(*predict_data, data_class=(int, float, str, None, Tensor))
predict_net = self._predict_network
# Unlike the cases in build_train_network() and build_eval_network(), 'multi_subgraphs' is not set
predict_net = self._check_network_mode(predict_net, False)
if skip_backend_compile:
origin_phase = predict_net.phase
predict_net.phase = "export." + predict_net.phase
predict_net.compile(*predict_data)
# set phase back to prevent from hitting incomplete compile cache
predict_net.phase = origin_phase
else:
predict_net.compile(*predict_data)
return predict_net.parameter_layout_dict
def _flush_from_cache(self, cb_params):
"""Flush cache data to host if tensor is cache enable."""
params = cb_params.train_network.get_parameters()
for param in params:
if param.cache_enable:
Tensor(param).flush_from_cache()
@property
def train_network(self):
"""
Get the model's train network.
Returns:
Object, the instance of train network.
"""
return self._train_network
@property
def predict_network(self):
"""
Get the model's predict network.
Returns:
Object, the instance of predict network.
"""
return self._predict_network
@property
def eval_network(self):
"""
Get the model's eval network.
Returns:
Object, the instance of evaluate network.
"""
return self._eval_network
def _prepare_obf_dataset(self, dataset):
if not hasattr(self._network, 'obf_ratios'):
return dataset
data_size = dataset.get_dataset_size()
obf_ratio_dataset = []
for _ in range(data_size):
obf_ratio_dataset.append(self._network.obf_ratios)
obf_ratio_dataset = ds.NumpySlicesDataset(data=obf_ratio_dataset, column_names=["y_obf"])
dataset = ds.zip((dataset, obf_ratio_dataset))
return dataset
__all__ = ["Model"]