mindspore.nn.probability.distribution.beta 源代码

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Beta Distribution"""
import numpy as np
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.ops import composite as C
import mindspore.nn as nn
from mindspore import _checkparam as Validator
from mindspore.common import dtype as mstype
from .distribution import Distribution
from ._utils.utils import check_greater_zero, check_distribution_name
from ._utils.custom_ops import log_generic


[文档]class Beta(Distribution): r""" Beta distribution. A Beta distributio is a continuous distribution with the range :math:`[0, 1]` and the probability density function: .. math:: f(x, \alpha, \beta) = x^\alpha (1-x)^{\beta - 1} / B(\alpha, \beta), where :math:`B` is the Beta function. Args: concentration1 (int, float, list, numpy.ndarray, Tensor): The concentration1, also know as alpha of the Beta distribution. Default: ``None`` . concentration0 (int, float, list, numpy.ndarray, Tensor): The concentration0, also know as beta of the Beta distribution. Default: ``None`` . seed (int): The seed used in sampling. The global seed is used if it is None. Default: ``None`` . dtype (mindspore.dtype): The type of the event samples. Default: ``mstype.float32`` . name (str): The name of the distribution. Default: ``'Beta'`` . Note: - `concentration1` and `concentration0` must be greater than zero. - `dist_spec_args` are `concentration1` and `concentration0`. - `dtype` must be a float type because Beta distributions are continuous. Raises: ValueError: When concentration1 <= 0 or concentration0 >=1. TypeError: When the input `dtype` is not a subclass of float. Supported Platforms: ``Ascend`` Examples: >>> import mindspore >>> import mindspore.nn as nn >>> import mindspore.nn.probability.distribution as msd >>> from mindspore import Tensor >>> # To initialize a Beta distribution of the concentration1 3.0 and the concentration0 4.0. >>> b1 = msd.Beta([3.0], [4.0], dtype=mindspore.float32) >>> # A Beta distribution can be initialized without arguments. >>> # In this case, `concentration1` and `concentration0` must be passed in through arguments. >>> b2 = msd.Beta(dtype=mindspore.float32) >>> # Here are some tensors used below for testing >>> value = Tensor([0.1, 0.5, 0.8], dtype=mindspore.float32) >>> concentration1_a = Tensor([2.0], dtype=mindspore.float32) >>> concentration0_a = Tensor([2.0, 2.0, 2.0], dtype=mindspore.float32) >>> concentration1_b = Tensor([1.0], dtype=mindspore.float32) >>> concentration0_b = Tensor([1.0, 1.5, 2.0], dtype=mindspore.float32) >>> # Private interfaces of probability functions corresponding to public interfaces, including >>> # `prob` and `log_prob`, have the same arguments as follows. >>> # Args: >>> # value (Tensor): the value to be evaluated. >>> # concentration1 (Tensor): the concentration1 of the distribution. Default: self._concentration1. >>> # concentration0 (Tensor): the concentration0 of the distribution. Default: self._concentration0. >>> # Examples of `prob`. >>> # Similar calls can be made to other probability functions >>> # by replacing 'prob' by the name of the function >>> ans = b1.prob(value) >>> print(ans.shape) (3,) >>> # Evaluate with respect to the distribution b. >>> ans = b1.prob(value, concentration1_b, concentration0_b) >>> print(ans.shape) (3,) >>> # `concentration1` and `concentration0` must be passed in during function calls >>> ans = b2.prob(value, concentration1_a, concentration0_a) >>> print(ans.shape) (3,) >>> # Functions `mean`, `sd`, `mode`, `var`, and `entropy` have the same arguments. >>> # Args: >>> # concentration1 (Tensor): the concentration1 of the distribution. Default: self._concentration1. >>> # concentration0 (Tensor): the concentration0 of the distribution. Default: self._concentration0. >>> # Example of `mean`, `sd`, `mode`, `var`, and `entropy` are similar. >>> ans = b1.mean() >>> print(ans.shape) (1,) >>> ans = b1.mean(concentration1_b, concentration0_b) >>> print(ans.shape) (3,) >>> # `concentration1` and `concentration0` must be passed in during function calls. >>> ans = b2.mean(concentration1_a, concentration0_a) >>> print(ans.shape) (3,) >>> # Interfaces of 'kl_loss' and 'cross_entropy' are the same: >>> # Args: >>> # dist (str): the type of the distributions. Only "Beta" is supported. >>> # concentration1_b (Tensor): the concentration1 of distribution b. >>> # concentration0_b (Tensor): the concentration0 of distribution b. >>> # concentration1_a (Tensor): the concentration1 of distribution a. >>> # Default: self._concentration1. >>> # concentration0_a (Tensor): the concentration0 of distribution a. >>> # Default: self._concentration0. >>> # Examples of `kl_loss`. `cross_entropy` is similar. >>> ans = b1.kl_loss('Beta', concentration1_b, concentration0_b) >>> print(ans.shape) (3,) >>> ans = b1.kl_loss('Beta', concentration1_b, concentration0_b, concentration1_a, concentration0_a) >>> print(ans.shape) (3,) >>> # Additional `concentration1` and `concentration0` must be passed in. >>> ans = b2.kl_loss('Beta', concentration1_b, concentration0_b, concentration1_a, concentration0_a) >>> print(ans.shape) (3,) >>> # Examples of `sample`. >>> # Args: >>> # shape (tuple): the shape of the sample. Default: () >>> # concentration1 (Tensor): the concentration1 of the distribution. Default: self._concentration1. >>> # concentration0 (Tensor): the concentration0 of the distribution. Default: self._concentration0. >>> ans = b1.sample() >>> print(ans.shape) (1,) >>> ans = b1.sample((2,3)) >>> print(ans.shape) (2, 3, 1) >>> ans = b1.sample((2,3), concentration1_b, concentration0_b) >>> print(ans.shape) (2, 3, 3) >>> ans = b2.sample((2,3), concentration1_a, concentration0_a) >>> print(ans.shape) (2, 3, 3) """ def __init__(self, concentration1=None, concentration0=None, seed=None, dtype=mstype.float32, name="Beta"): """ Constructor of Beta. """ param = dict(locals()) param['param_dict'] = { 'concentration1': concentration1, 'concentration0': concentration0} valid_dtype = mstype.float_type Validator.check_type_name( "dtype", dtype, valid_dtype, type(self).__name__) # As some operators can't accept scalar input, check the type here if isinstance(concentration0, float): raise TypeError("Input concentration0 can't be scalar") if isinstance(concentration1, float): raise TypeError("Input concentration1 can't be scalar") super(Beta, self).__init__(seed, dtype, name, param) self._concentration1 = self._add_parameter( concentration1, 'concentration1') self._concentration0 = self._add_parameter( concentration0, 'concentration0') if self._concentration1 is not None: check_greater_zero(self._concentration1, "concentration1") if self._concentration0 is not None: check_greater_zero(self._concentration0, "concentration0") # ops needed for the class self.log = log_generic self.log1p = P.Log1p() self.neg = P.Neg() self.pow = P.Pow() self.squeeze = P.Squeeze(0) self.cast = P.Cast() self.shape = P.Shape() self.select = P.Select() self.logicaland = P.LogicalAnd() self.greater = P.Greater() self.digamma = nn.DiGamma() self.lbeta = nn.LBeta() def extend_repr(self): """Display instance object as string.""" if self.is_scalar_batch: s = 'concentration1 = {}, concentration0 = {}'.format( self._concentration1, self._concentration0) else: s = 'batch_shape = {}'.format(self._broadcast_shape) return s @property def concentration1(self): """ Return the concentration1, also know as the alpha of the Beta distribution, after casting to dtype. Output: Tensor, the concentration1 parameter of the distribution. """ return self._concentration1 @property def concentration0(self): """ Return the concentration0, also know as the beta of the Beta distribution, after casting to dtype. Output: Tensor, the concentration2 parameter of the distribution. """ return self._concentration0 def _get_dist_type(self): return "Beta" def _get_dist_args(self, concentration1=None, concentration0=None): if concentration1 is not None: self.checktensor(concentration1, 'concentration1') else: concentration1 = self._concentration1 if concentration0 is not None: self.checktensor(concentration0, 'concentration0') else: concentration0 = self._concentration0 return concentration1, concentration0 def _mean(self, concentration1=None, concentration0=None): """ The mean of the distribution. """ concentration1, concentration0 = self._check_param_type( concentration1, concentration0) return concentration1 / (concentration1 + concentration0) def _var(self, concentration1=None, concentration0=None): """ The variance of the distribution. """ concentration1, concentration0 = self._check_param_type( concentration1, concentration0) total_concentration = concentration1 + concentration0 return concentration1 * concentration0 / (self.pow(total_concentration, 2) * (total_concentration + 1.)) def _mode(self, concentration1=None, concentration0=None): """ The mode of the distribution. """ concentration1, concentration0 = self._check_param_type( concentration1, concentration0) comp1 = self.greater(concentration1, 1.) comp2 = self.greater(concentration0, 1.) cond = self.logicaland(comp1, comp2) batch_shape = self.shape(concentration1 + concentration0) nan = F.fill(self.dtype, batch_shape, np.nan) mode = (concentration1 - 1.) / (concentration1 + concentration0 - 2.) return self.select(cond, mode, nan) def _entropy(self, concentration1=None, concentration0=None): r""" Evaluate entropy. .. math:: H(X) = \log(\Beta(\alpha, \beta)) - (\alpha - 1) * \digamma(\alpha) - (\beta - 1) * \digamma(\beta) + (\alpha + \beta - 2) * \digamma(\alpha + \beta) """ concentration1, concentration0 = self._check_param_type( concentration1, concentration0) total_concentration = concentration1 + concentration0 return self.lbeta(concentration1, concentration0) \ - (concentration1 - 1.) * self.digamma(concentration1) \ - (concentration0 - 1.) * self.digamma(concentration0) \ + (total_concentration - 2.) * self.digamma(total_concentration) def _cross_entropy(self, dist, concentration1_b, concentration0_b, concentration1_a=None, concentration0_a=None): r""" Evaluate cross entropy between Beta distributions. Args: dist (str): Type of the distributions. Should be "Beta" in this case. concentration1_b (Tensor): concentration1 of distribution b. concentration0_b (Tensor): concentration0 of distribution b. concentration1_a (Tensor): concentration1 of distribution a. Default: self._concentration1. concentration0_a (Tensor): concentration0 of distribution a. Default: self._concentration0. """ check_distribution_name(dist, 'Beta') return self._entropy(concentration1_a, concentration0_a) \ + self._kl_loss(dist, concentration1_b, concentration0_b, concentration1_a, concentration0_a) def _log_prob(self, value, concentration1=None, concentration0=None): r""" Evaluate log probability. Args: value (Tensor): The value to be evaluated. concentration1 (Tensor): The concentration1 of the distribution. Default: self._concentration1. concentration0 (Tensor): The concentration0 the distribution. Default: self._concentration0. .. math:: L(x) = (\alpha - 1) * \log(x) + (\beta - 1) * \log(1 - x) - \log(\Beta(\alpha, \beta)) """ value = self._check_value(value, 'value') value = self.cast(value, self.dtype) concentration1, concentration0 = self._check_param_type( concentration1, concentration0) log_unnormalized_prob = (concentration1 - 1.) * self.log(value) \ + (concentration0 - 1.) * self.log1p(self.neg(value)) return log_unnormalized_prob - self.lbeta(concentration1, concentration0) def _kl_loss(self, dist, concentration1_b, concentration0_b, concentration1_a=None, concentration0_a=None): r""" Evaluate Beta-Beta KL divergence, i.e. KL(a||b). Args: dist (str): The type of the distributions. Should be "Beta" in this case. concentration1_b (Tensor): The concentration1 of distribution b. concentration0_b (Tensor): The concentration0 distribution b. concentration1_a (Tensor): The concentration1 of distribution a. Default: self._concentration1. concentration0_a (Tensor): The concentration0 distribution a. Default: self._concentration0. .. math:: KL(a||b) = \log(\Beta(\alpha_{b}, \beta_{b})) - \log(\Beta(\alpha_{a}, \beta_{a})) - \digamma(\alpha_{a}) * (\alpha_{b} - \alpha_{a}) - \digamma(\beta_{a}) * (\beta_{b} - \beta_{a}) + \digamma(\alpha_{a} + \beta_{a}) * (\alpha_{b} + \beta_{b} - \alpha_{a} - \beta_{a}) """ check_distribution_name(dist, 'Beta') concentration1_b = self._check_value( concentration1_b, 'concentration1_b') concentration0_b = self._check_value( concentration0_b, 'concentration0_b') concentration1_b = self.cast(concentration1_b, self.parameter_type) concentration0_b = self.cast(concentration0_b, self.parameter_type) concentration1_a, concentration0_a = self._check_param_type( concentration1_a, concentration0_a) total_concentration_a = concentration1_a + concentration0_a total_concentration_b = concentration1_b + concentration0_b log_normalization_a = self.lbeta(concentration1_a, concentration0_a) log_normalization_b = self.lbeta(concentration1_b, concentration0_b) return (log_normalization_b - log_normalization_a) \ - (self.digamma(concentration1_a) * (concentration1_b - concentration1_a)) \ - (self.digamma(concentration0_a) * (concentration0_b - concentration0_a)) \ + (self.digamma(total_concentration_a) * (total_concentration_b - total_concentration_a)) def _sample(self, shape=(), concentration1=None, concentration0=None): """ Sampling. Args: shape (tuple): The shape of the sample. Default: (). concentration1 (Tensor): The concentration1 of the samples. Default: self._concentration1. concentration0 (Tensor): The concentration0 of the samples. Default: self._concentration0. Returns: Tensor, with the shape being shape + batch_shape. """ shape = self.checktuple(shape, 'shape') concentration1, concentration0 = self._check_param_type( concentration1, concentration0) batch_shape = self.shape(concentration1 + concentration0) origin_shape = shape + batch_shape if origin_shape == (): sample_shape = (1,) else: sample_shape = origin_shape ones = F.fill(self.dtype, sample_shape, 1.0) sample_gamma1 = C.gamma( sample_shape, alpha=concentration1, beta=ones, seed=self.seed) sample_gamma2 = C.gamma( sample_shape, alpha=concentration0, beta=ones, seed=self.seed) sample_beta = sample_gamma1 / (sample_gamma1 + sample_gamma2) value = self.cast(sample_beta, self.dtype) if origin_shape == (): value = self.squeeze(value) return value