# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""lazy_inline"""
from __future__ import absolute_import
import inspect
from functools import wraps
[文档]def lazy_inline(fn=None, attrs=None):
"""
Make the cell to be reusable. The corresponding sub graph will not be inline at first.
Registering the decorator of the built-in function `__init__` of a cell, the decorator
will add the parameters of `__init__` according to the `attrs` as the attributes of this cell.
.. warning::
This feature is only supported on Ascend and is not supported on other hardwares.
Args:
fn (function): `__init__` function of a cell.
attrs (Union[list[string], string]): The attributes list to add for the cell.
Returns:
function, original function.
Supported Platforms:
``Ascend``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> import mindspore.nn as nn
>>> from mindspore import lazy_inline
>>> from mindspore import context
>>> from mindspore import ops
>>> def conv3x3(in_channels, out_channels, stride=1, padding=1, pad_mode='pad'):
... return nn.Conv2d(in_channels, out_channels,
... kernel_size=3, stride=stride, padding=padding, pad_mode=pad_mode)
...
>>> def conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='pad'):
... return nn.Conv2d(in_channels, out_channels,
... kernel_size=1, stride=stride, padding=padding, pad_mode=pad_mode)
...
>>> class Block(nn.Cell):
... expansion = 4
...
... @lazy_inline
... def __init__(self,
... in_channels,
... out_channels,
... stride=1,
... down_sample=False):
... super(Block, self).__init__()
...
... out_chls = out_channels
... self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0)
... self.bn1 = nn.BatchNorm2d(out_chls)
...
... self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=1)
... self.bn2 = nn.BatchNorm2d(out_chls)
...
... self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
... self.bn3 = nn.BatchNorm2d(out_channels)
...
... self.relu = nn.ReLU()
... self.downsample = down_sample
...
... self.conv_down_sample = conv1x1(in_channels, out_channels,
... stride=stride, padding=0)
... self.bn_down_sample = nn.BatchNorm2d(out_channels)
... self.add = ops.Add()
...
... def construct(self, x):
... identity = x
...
... out = self.conv1(x)
... out = self.bn1(out)
... out = self.relu(out)
...
... out = self.conv2(out)
... out = self.bn2(out)
... out = self.relu(out)
...
... out = self.conv3(out)
... out = self.bn3(out)
...
... if self.downsample:
... identity = self.conv_down_sample(identity)
... identity = self.bn_down_sample(identity)
...
... out = self.add(out, identity)
... out = self.relu(out)
...
... return out
...
>>> class Net(nn.Cell):
... def __init__(self, block, num_classes=100):
... super(Net, self).__init__()
...
... self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad')
... self.bn1 = nn.BatchNorm2d(64)
... self.relu = nn.ReLU()
... self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='valid')
...
... self.layer = self.MakeLayer(
... block, 50, in_channels=64, out_channels=2048, stride=2)
... self.avgpool = nn.AvgPool2d(7, 1)
... self.flatten = ops.Flatten()
...
... def MakeLayer(self, block, layer_num, in_channels, out_channels, stride):
... layers = []
... resblk = block(in_channels, out_channels,
... stride=stride, down_sample=True)
... layers.append(resblk)
...
... for _ in range(1, layer_num):
... resblk = block(out_channels, out_channels, stride=1)
... layers.append(resblk)
...
... return nn.SequentialCell(layers)
...
... def construct(self, x):
... x = self.conv1(x)
... x = self.bn1(x)
... x = self.relu(x)
... x = self.maxpool(x)
... x = self.layer(x)
... x = self.avgpool(x)
... x = self.flatten(x)
... return x
...
>>> def test_compile():
... net = Net(Block)
... inp = Tensor(np.ones([1, 3, 224, 224]).astype(np.float32))
... net(inp)
...
>>> context.set_context(mode=context.GRAPH_MODE,
... save_graphs=True, save_graphs_path="./lazy")
...
>>> test_compile()
"""
def wrap_cell(fn):
@wraps(fn)
def deco(self, *args, **kwargs):
arguments = []
if attrs is None:
bound_args = inspect.signature(fn).bind(self, *args, **kwargs)
arguments = bound_args.arguments
del arguments['self']
arguments = arguments.values()
fn(self, *args, **kwargs)
if attrs is None:
self.cell_init_args = "lazy_inline_" + type(self).__name__ + str(arguments)
return
if isinstance(attrs, list):
for item in attrs:
if not isinstance(item, str):
raise ValueError(f"attr must be a string")
if hasattr(self, item):
arguments.append(getattr(self, item))
elif isinstance(attrs, str):
if hasattr(self, attrs):
arguments = getattr(self, attrs)
else:
raise ValueError(f"attrs must be list or string")
self.cell_init_args = "lazy_inline_" + type(self).__name__ + str(arguments)
return deco
if fn is not None:
return wrap_cell(fn)
return wrap_cell